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CHAPTER 1

INTRODUCTION

This dissertation is a detailed documentation of our studies on specific aspects of

nuclear matter in extreme conditions of temperature, pressure and baryon density.

Extreme conditions are believed to have prevailed a few microseconds after the Big

Bang, the moment the universe was created. With the advancement in scientific

knowledge and technology, it has become possible to create the extreme situation

under laboratory conditions, in a very small scale of space and time. The experiments

to create this kind of situation are the ultra-relativistic collisions of heavy nuclei.

Such collisions are carried out at large laboratory facilities like Relativistic Heavy Ion

Colliders (RHIC) at Brookhaven National Laboratory (BNL) and the Large Hadron

Collider (LHC) at European Center for Nuclear Research (CERN).

RHIC started its operation at the beginning of the last decade and the LHC started

its first run on Pb + Pb in 2010. At its optimum capacity, RHIC collides gold-gold

nuclei at a center of mass energy of 200 GeV per nucleon pair (
√
s = 200 GeV). This

is a tremendous amount of energy. To get some idea of the energy scale, we need to

note that 200 GeV is equivalent to temperatures of ∼ 1012 K, about 100 million times

the core temperature of the Sun. The LHC can collide lead-lead nuclei at
√
s = 2.76

TeV. The temperatures that can be reached in these collisions are greater than 300

MeV at the RHIC [8] and 420 MeV at the LHC [9]. Therefore, the matter created in

such collisions is indeed under extreme conditions, albeit in an extremely small scale

of space and time. This is the space and time scale of the order of a few tens of fermi

(10−15 m).

The extreme temperatures and pressures are sufficient (i.e., the energy is larger

than the QCD scale ΛQCD ∼ 200 MeV) to break the strong force that keeps the
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quarks and gluons confined. At extreme energy density the quarks and gluons are

deconfined and the matter transits to the phase of quark-gluon plasma (QGP). Lattice

QCD calculations at zero baryon density have shown that the transition is a rapid

crossover transition around the temperature T ∼ 170 MeV [4, 18, 12]. In other words,

the phase transition from hadrons to quark-gluon plasma is a second order rather than

a first order according to the lattice QCD calculations.

The idea of the QCD phase transition and creation of weakly interacting QGP

using extremely energetic collisions of heavy nuclei was envisioned [5] right after

the discovery of asymptotic freedom [1, 2]. The kind of QGP envisioned before the

advent of RHIC was a matter consisting of weakly coupled massless quarks and gluons.

RHIC experimental results, however, showed that the heavy ion collision experiments

actually produces a strongly interacting color plasma of quarks and gluons. It is

not a gas consisting of weakly interacting quarks and gluons as was expected. This

might however be the case at even higher temperatures well beyond the transition

temperature. The existence of strongly interacting QGP is evidenced by a surprisingly

large amount of elliptic flow, much larger (by an order of magnitude) than given by

perturbative QCD. RHIC experiments also showed that the strongly interacting QGP

behaves like a nearly perfect fluid - much less viscous than the superfluid liquid helium.

In the field of heavy ion physics, methods of relativistic hydrodynamics and rel-

ativistic kinetic theory have been extensively applied for the bulk treatment of the

evolution of QGP. In relativistic hydrodynamics, the ratio of viscosity to entropy

density serves as the kinematic viscosity. This ratio, η/s, is an important transport

parameter to characterize the perfectness (or lack thereof) of QGP. Note that, while

discussing viscosity of QGP in our work, we most often mean the shear viscosity,

η. Bulk viscosity is often ignored in comparison to shear viscosity. This will be dis-

cussed in detail in Chapters 3 and 4. Hydrodynamic model calculations, both ideal

and viscous, indicate that η for QGP is unlikely to exceed 0.3 (in the units where
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c = kB = ~ = 1) [83]. AdS/CFT calculations have put a lower limit of 1/4π on its

value [?]. This limit is known as the Kovtun-Son-Starinets (KSS) bound, and it is

believed to be the lowest possible bound for η/s. Quantum kinetic theory calculations

carried out as early as the mid 1980s [75] also put the lowest value close to this bound.

In our theory, discussed in detail in subsequent chapters, this ratio plays an impor-

tant role. The main ingredient of our theory is the causal diffusion of two-particle

transverse momentum correlation in the quark-gluon plasma medium. The ratio η/s

turns out to be a major factor of the diffusion and the relaxation coefficients of the

causal diffusion equation.

The theory presented in this work is about hydrodynamic evolution of two-particle

correlations of transverse momentum fluctuations. In general, two-particle correla-

tions and related fluctuation studies and measurements are very useful as they reveal

the space-time information on particle production and dynamics not observed by

single particle distributions. Long range correlations, for example, indicate that the

correlated particles should be produced at the earlier stage of particle production.

Correlated pairs with large rapidity separation are like the twins separated at birth,

while those with a short gap are like twins that have grown up together. Correlation

measurements have played a very important role in most of the discoveries at RHIC

and LHC. Measurements of jet tagged two-particle correlations provided us with the

evidence of jet quenching and hence evidence of the existence of QGP. Another ex-

ample is elliptic flow studies, which revealed the “nearly” perfect fluid behavior of the

produced particles. These successes inspired further correlation measurements and

studies like the “ridge”, a long range correlation profile that will be briefly discussed

in Chapter 2.

Experimental measurements of two-particle correlations have revealed a complex

pattern of bumps and ridges in relative pseudo rapidity ∆η = η1 − η2 and azimuthal

angles ∆φ = φ1−φ2 [38, 103, 44]. Recently, long range correlations have been observed
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even in the case of d-Pb collisions at LHC [?]. We will give a general introduction of

the correlation patterns and structures in Chapter 2. Especially interesting correla-

tions are the long range correlations in relative rapidity, called the “ridge”. PHOBOS

(a RHIC collaboration) measurements show that the correlation extends to six units

of relative pseudorapidity (Fig.2.14). The phenomenon of the ridge is probably among

the most important experimental findings by RHIC experiments, after the discovery

of high elliptic flow and jet quenching. We do not expect that the effects of short

range phenomena like hydrodynamics, resonance decays and freezeout produce corre-

lations with this big relative rapidity. Long range in relative rapidity means causally

disconnected regions for hydrodynamic evolution. The long range correlations like

the ridge must originate from the initial conditions and reveal early time dynamics,

earlier than the time when the system of collided nuclei equilibrates thermally and

hydrodynamic evolution sets in.

The main focus of our search for this work is how the second order viscous hydrody-

namic evolution contributes to the two-particle transverse momentum, pt, correlation

structure. The first order case has already been studied by Gavin and Abdel-Aziz

[71], the work that provided an alternate method for estimating η/s. The important

ratio η/s has traditionally been estimated using elliptic flow data. In addition to our

main theory of causal diffusion of pt correlation, we also use the first order case in our

studies. The purpose is to compare the results and to see if there are some distinct

features that result from the second order theory alone.

We compute some experimentally measurable observables. These observables were

introduced in the work of Gavin and Abdel-Aziz [71] and were measured by the

STAR collaboration of RHIC [43]. We discuss these observables in detail in Chapter

6. The main goal of the STAR measurement was to estimate η/s, by the method

proposed by Gavin and Abdel-Aziz. The range of values of η/s obtained by the

measurements came out to be consistent with the values estimated from the flow
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data. In addition, the STAR measurements of the observables have been invaluable

for our study, especially to compare and test our second order theory. We will discuss

the relevant experimental results in Chapter 6.

The core of our work here consists of two main parts. The first part is the devel-

opment of the second order or causal deterministic diffusion equation for two-particle

transverse momentum correlation using Israel-Stewart second order hydydrodymics.

After reviewing basic hydrodynamics in some detail, we first obtain the causal diffu-

sion equation for fluctuations in single particle momentum current in Chapter 3. In

Chapter 5, we first discuss the general aspects of two-particle correlations and then

move on to obtain the second order diffusion equation for two-particle pt correlations.

We find that the diffusion equation contains the stochastic noise. However the noise

cancels out when we subtract the equilibrium part of the equation. This leads to our

equation - the deterministic second order diffusion equation for pt correlations over

the background thermal correlations. The detail is in Chapter 5.

The the other part of our contribution consists of solving our equation and com-

puting the observables. In addition to our second order equation, we also solve the

first order diffusion equation, first obtained in Ref. [71]. We have already pointed out

that the purpose of including the first order equation is to compare the two theory

and to see if observables calculated using second order equations show some novel

features. The correlations profiles in relative rapidity, ∆η have not been computed

before for the first order. We will show that we do obtain novel features in the corre-

lation in relative rapidity. Interestingly, STAR experimental results [43] also indicate

such features. We present these exciting results and comparison with experimental

data and also with the results obtained from the first order equations in Chapter 8.

Both first and second order theory requires information on viscosity and entropy

density to obtain the strength of diffusion, i.e., the diffusion coefficient. The second

order theory needs an additional coefficient - the relaxation time. Kinetic theory cal-
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culations show that relaxation time is proportional to the diffusion coefficient. There-

fore, both coefficients require η/s. This ratio is discussed in detail in Chapter 4. In

that chapter we collect the available latest theoretical expressions for temperature

dependent shear viscosity and discuss the equations of state that we use in our com-

putations. We use two different equations of states: one is the equation of state based

on the lattice QCD computations. The other equation of state we use is the stan-

dard equation of state based on the Bag Model. The equations stated gives entropy

density which we combine with the temperature dependent shear viscosity to form

a general temperature dependent η/s. The diffusion and relaxation coefficients are

then obtained from the temperature dependent η/s.

We use only longitudinal expansion in our current work. The full 3+1 (space and

time) dimensional treatment for two-particle correlations is our much more ambitious

goal for the future work. Currently, there are theoretical and numeral challenges in

that direction. Our future work in this regard is to address those challenges. We

briefly discuss our immediate goal and the challenges in Chapter 9.

The generality of our results, as far as the observables are concerned, is not lost by

the use of only longitudinal expansion. It turns out that the transverse expansion in-

tegrates out. We present this important point with a simple calculation in Chapter 9.

This, however, does not reduce the importance of a full 3+1 dimensional theory. We

need the full theory and computation because we want to understand the the whole

correlation profiles in ∆η and ∆φ.

This dissertation has been organized in the following way. After this introductory

chapter, we discuss the basics of heavy ion collisions and their most important fea-

tures in Chapter 2. This is followed by a general detailed discussion of relativistic

hydrodynamics which is geared toward building up the evolution equation for single

particle transverse momentum current in Chapter 3. We then collect current infor-

mation on viscosity and entropy density in Chapter 4. In that chapter, we discuss
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the general temperature dependent η/s and the two different equations of state we

use in our theory. In Chapter 5, we first discuss transverse momentum correlations

in general and then obtain our major equation - the second order or causal determin-

istic diffusion equation for two-particle transverse momentum correlation. Next, we

discuss the observables and the results of experimental measurements in Chapter 6.

This is followed by the discussion of initial conditions, assumptions and parameters

used in our computation in Chapter 7. We then present the results of numerical

computations and compare with experimental results in Chapter 8. Finally, we make

a brief but important statement on transverse expansion and present a sketch on our

future work as well as make some concluding remarks in Chapter 9.
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CHAPTER 2

BASICS OF HEAVY ION COLLISIONS

From ancient times, curiosity about nature, matter and the universe has guided the

human quests toward two very diverged fronts of human knowledge. One is the quest

about the basic units of matter. In other words, what are the basic building blocks

of the matter? The other is just the opposite - how big is the universe? The great

discoveries and paradigm shifts in the history of natural science are the consequences

of human attempts to answer these apparently very diverged basic questions.

We know that our current knowledge of quarks, gluons, leptons and photons and

their interactions are the results of our quest toward the basic units of matter. Our

current knowledge in this respect is summarized in what is called the Standard Model.

Our quest in the other direction has resulted in the current experimental knowledge,

and the theoretical frameworks, about the vast universe we know so far. In fact the

two diverged quests are not independent. We know more about the universe now

because we know more about the basic building blocks of matter. The heavy ion

collision experiments provide an excellent example of connecting these two seemingly

diverged basic quests.

Currently the most accepted theory on the origin of the universe is the Big Bang

theory. It is basically the extrapolation of the current expansion of the universe back

in time using the theory of General Relativity. The Big Bang is the resulting (near)

singularity containing extremely hot and dense matter. It is believed that the universe

around one microsecond after the Big Bang was was made up of de-confined weakly

bound quark and gluons. Such extreme matter is called quark-gluon plasma (QGP).

The main purpose of heavy ion collision experiments is to create similar conditions in

a small scale of space and time. This is the reason why relativistic heavy ion collision
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Figure 2.1: Time line of the universe according to the Big Bang theory. It is believed
the form of matter was QGP at the time a few microseconds after the Big Bang.
Image source: LBNL.

experiments are sometimes dubbed “Little Bangs”. Thus, in a broad perspective, the

goal of relativistic heavy ion collision experiments is to create and study quark-gluon

plasma in order to look back into the universe’s past, close to the time of the Big

Bang.

Study of heavy ion collisions began to take real shape after the discovery of asymp-

totic freedom [1, 2]. Collins and Perry had suggested [3] that “superdense matter

(found in neutron-star cores, exploding black holes, and the early big-bang universe)

consists of quarks rather than hadrons. Figure 2.1 illustrates the likely scenario and

the timeline of the universe, in accordance with the Big Bang theory.

The ultimate goal of the heavy ion colliders at RHIC and LHC is to create the

quark-gluon plasma and study the properties of this extreme nuclear matter. The

basic idea is that at very high temperature (compared to the QCD temperature

scale, ΛQCD), the confinements breaks and results in weakly coupled plasma of quarks

and gluons. This is weakly coupled QGP (or wQGP). Theoretically, the regime of

this matter is the regime of perturbative QCD. However, Hagedorn’s work in 1970
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demonstrated that hadronic matter has the phase boundary around 170 MeV, lower

than ΛQCD and out of the regime of perturbative QCD. Lattice QCD calculations [4]

later also showed that phase transition occurs around that temperature. The plasma

at this temperate is not wQGP, but rather a strongly interacting QGP, or sQGP.

The unexpectedly high elliptic flow of the observed particles and the jet quenching

shown by RHIC experiments indicated that the QGP produced in these collisions is

strongly interacting QGP. At higher temperatures (T � ΛQCD) the QGP may well

be a weakly interacting QGP, but that has not been experimentally confirmed yet.

In this chapter we describe in detail the basics of heavy ion collisions. We start

with a very brief discussion of basic idea of QCD in Section 2.1. Our purpose here

is to be descriptive enough to put our subsequent discussions on quark-gluon colored

plasma in context. In Section 2.2, we discuss some relevant aspects of heavy ion

collisions. In following sections, we briefly discuss some basic features and elements

of heavy ions physics and phenomena.

2.1 QCD and quark-gluon plasma

Our current knowledge of the most elementary building blocks of matter is de-

scribed in a well established theoretical framework known as the Standard Model

(SM) of particle physics. According to SM, the most fundamental building blocks

are quarks, gluons, leptons, their antiparticles and the force carrier bosons. These

particles are listed in the table of Fig. 2.2. The fundamental interactions among the

particles are electromagnetic, weak interactions (called “electroweak” in combination)

and the strong interactions (the “color force”). Electromagnetic interaction occurs

between charged particles and the interaction is described by the theory of Quantum

Electrodynamics (QED). Similarly, particles with color charge - the quarks and glu-

ons, interact via the strong color force. Interactions these particles are governed by

Quantum Chromodynamics (QCD).
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Figure 2.2: The “Periodic Table” of elementary particles (Standard Model). Current
masses, charges and spins are indicated. The Higgs boson is responsible for assign-
ing mass to an elementary particle according to the Standard Model. Image from
Wikimedia.

According to the SM, protons, neutrons, pions and other hadrons are composite

structures made up of quarks. Quarks come in 6 flavors: up, down, charm, strange,

top and bottom. They are fermions and have fractional positive and negative charges.

Up and down are the lightest quarks. They are often treated as massless in theoretical

analysis. The bottom and the top are very heavy quarks. Fig. 2.2 shows the masses

of quarks as well. We can see that mass of a strange quark is about 75% of the mass

of a pion. Similarly a charm quark is slightly heavier than a proton.

An extra degree of freedom, besides the usual quantum numbers, is required to

describe the interaction and dynamics in QCD. As an example, without this new

quantum number, the exclusion principle does not allow for the existence of particles

like ∆++, which contains three strange quarks. This extra quantum number is called

‘color’. It exists in three states: red, green and blue. Although ‘colored’ states can

reside within a hadron, nature seems to dictate that free particles are always color

singlet, i.e., color neutral. This is the reason one may never isolate a free quark.

Analogous to photons of QED, and the W± and Z bosons of weak interactions, the
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mediators of the strong interaction of QCD are gluons. There are eight gluons and

an important distinction of QCD interactions is that gluons carry color charge and

interact with themselves, along with the quarks.

Both QED and QCD are gauge theories. Each one has its own underlying symme-

try and the exchange particle(s), called gauge bosons, for interactions. QED is a gauge

theory with U(1) symmetry having the photon as the gauge boson. In fact, QED is the

abelian U(1) component of the Standard Model symmetry SU(3)× SU(2)× SU(1).

Gauge bosons of this interaction, i.e., the mediators of QED interactions, are photons.

The strength of interaction in any gauge theory is expressed by a coupling “constant”,

denoted by α. In general, α depends on the energy scale of the interaction. This re-

sults in a “running” coupling strengths. In QED at low energies (zero momentum

transfer limit), α ≈ 1/137, and at about the scale of the Z boson (mZ ≈ 91 GeV), we

have α(m2
Z) ≈ 1/129. The coupling strengthen further at higher energy scales (or at

lower length scales). At higher energy, α(E) grows further and diverges (the “Landau

pole”). However, the perturbation techniques used for calculating the coupling looses

its applicability at higher energy and the Landau pole is, most likely, not a reality.

Thus, in QED, the coupling strength is very small (α(E) � 1), and the method of

perturbative calculations are applicable in QED. This also holds true for the weak

interactions.

The underlying symmetry of QCD is SU(3) and it is a non-abelian gauge theory.

It has eight gauge bosons that interact with quarks and themselves. The interaction

of gluons among themselves makes QCD more complicated than QED. A consequence

is that the coupling strength in QCD has a feature that is very different from that

of QED. First, the coupling strength is much higher and, second, it is much more

sensitive to energy or momentum transfer. The dependence of coupling strength in

the energy scale (or approximately the momentum transfer scale, Q) is given by the



www.manaraa.com

13

so called Renormalization Group Equation (RGE):

Q2dαQCD
dQ2

≡ β(α) = b0 +O(α3
QCD) (2.1)

In 1973, Gross, Wilczeck and Politzer first calculated [1, 2] this β function for

QCD at the leading order (i.e., b0 in Eqn. (2.1)), and found a negative value. A

negative β means that the coupling decreases with increasing energy or momentum

transfer. Ultimately, at very high energy coupling between quarks and gluons becomes

very weak. This behavior is known as the asymptotic freedom. The value of b0 is

b0 = −33− 2Nf

12π
(2.2)

Integrating Eqn 2.1 and using Eqn 2.2 one gets

αQCD(Q2) =
12π

(33− 2Nf ) ln
(
Q2/Λ2

QCD

) (2.3)

Here, Nf is the number of flavors, and the constant of integration, ΛQCD, is the QCD

scale parameter (ΛQCD ≈ 200 MeV). Figure 2.3 shows the dependance of αQCD with

Q, along with the measured values from various experiments. We notice that for

Q2 � Λ2
QCD, the coupling gets significantly smaller than unity and the interactions

can be treated perturbatively.

We observe that at an energy scale of, say, a mass of 100 GeV, interactions between

quarks and gluons are significantly weaker. Asymptotic freedom raises the hope of

observing a plasma of free quarks and gluons. As is briefly mentioned in Chapter 1,

Cabibbo, Parisi, Collins and Perry introduced the concept of super dense nuclear

matter consisting of asymptotically free quarks and gluons [5, 3] in 1975. It was

Shuryak who introduced the term ’qurak-gluon plasma’ in 1978.

The quark-gluon plasma conceived originally is a weakly coupled quark-gluon
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Figure 2.3: Running QCD coupling strength. Image is taken from [6].

plasma (wQGP) and it is predicted to exit at temperatures T � ΛQCD. As is men-

tioned in Chapter 1, heavy ion collisions have found signatures of the production of

quark-gluon plasma at much lower temperatures, T ∼ ΛQCD. This is not the regime

of weakly coupled quarks and gluons. Instead, it turns out that hadrons like pions

and protons melt to form a strongly coupled quark-gluon plasma (sQGP).

2.2 Heavy ion collisions

Relativistic heavy ion collisions have provided an opportunity to study extremely

dense nuclear matter at extremely high temperature and pressure in laboratories.

The extreme temperatures and pressures achieved at RHIC and LHC are produced

by colliding heavy ions (like Au+Au at RHIC and Pb+Pb at LHC) head on at

almost the speed of light. As mentioned in Chapter 1, the collision energy at these

experiments for these ions can reach
√
s = 200 GeV and

√
s = 2.76 TeV, respectively.

The temperature in these collisions reaches more that 300 MeV at RHIC [8] and

420 MeV at LHC [9]. These temperatures are well above the QCD temperature scale
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Figure 2.4: Stages of a heavy ion collision. Lorentz contracted nuclei (first image) pass
through each other (second) depositing large amount of energy creating the QGP,
which goes through hydrodynamic expansion (third). The system then hadronizes
(fourth), free streams (second last) and the produced particles ultimately end up in
the detector. The last image is what is seen in STAR detector. Image from S. Bass
[7].

ΛQCD ≈ 200 MeV. Lattice QCD calculations have shown that, for vanishing baryon

density, hadronic matter undergoes a phase transition to a medium of deconfined

quarks and gluons at TC ≈ 170 MeV [4, 10, 11, 12]. The estimated energy at the

transition is ∼ 1 GeV. The energy density achieved in RHIC Au+Au collisions can

reach about 5 GeV/fm3.

One can see that the conditions for phase transition from hadrons to QGP are

available in RHIC and LHC collisions of heavy ions. In fact, RHIC experiments

carried out in the last decade have indicated the creation of such extreme nuclear

matter [13, 14, 15, 16, 17]. As for the type of phase transition between the hadronic

matter and the strongly coupled QGP, lattice QCD calculations indicate that the

transition is a rapid crossover [4, 18, 12] around TC .

Figure 2.4 describes the various stages of heavy ion collisions. At first, the two

approaching Lorentz contracted nuclei collide and pass through each other depositing

a large fraction of their energy in the overlap region. The region of extreme energy

density is believed to be thermally equilibrated at around τ0 ∼ 1 fm (τ = proper time).

This is the quark-gluon plasma, indicated in the third image. The QGP undergoes

hydrodynamic expansion and cools until the quarks and gluons hadronize. Hadrons

lose energy and ultimately free stream (second to last image) into the detector. The

last image in Fig. 2.4, illustrates the tracts of charged particles in the detector. A
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Figure 2.5: Evolution of a heavy ion collision. Various stages are shown. The hyper-
bolas represent the various constant proper times. Image from Ref. [19].

very large fraction of the detected particles are charged pions.

Figure 2.5 illustrates the evolution of the QGP created in a collision. Here, Z-axis

is the collision axis. Hyperbolas are lines of constant proper time, τ =
√
t2 − z2, for

longitudinal expansion of the system. This figure shows the pre-equilibrium stage,

the stage just after the collision and before the system thermalizes. Note that the

world line of the incoming nuclei are like that of photons. In fact, the speed of the

colliding nuclei is 99.995% the speed of light at RHIC energy. Nuclei at this speed

and energy do not stop but pass through each other. In this process, they excite

the QCD vacuum and create quarks, antiquarks and gluons. The system thermalizes

locally and produces a quark-gluon plasma. In addition to the system of bulk matter,

there are some partons or photons with much higher transverse momenta. Some

of these particles manage to escape and ultimately end up being detected as “jets”

in the detector after hadronization. We discuss jets shortly. After hydrodynamic

expansion, the system cools and undergoes hadronization. During this time, the

quarks and gluons recombine and result in formation of hadrons, most of which are

pions. The hadrons further loose energy and ultimately end up in the detector.

A number of specialized detectors are used to detect particles produced in heavy

ion collisions. Large experimental groups or collaborations analyze the tracks and
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measures various properties, identify particles, and so on. STAR, PHENIX, PHOBOS

and BRAHMS are the detectors and the respective collaborations at RHIC. At LHC,

there are four major experimental groups associated with the four detectors: ATLAS,

CMS, ALICE and LHCb. The details on these experimental groups and detectors

are found on their web pages: [20] and [21].

2.3 Thermalization

When we talk about temperature of the medium created in heavy ion collisions,

our tacit assumption is local thermal equilibrium. This is because the very concept of

temperature requires that the system be in local thermal equilibrium. Local thermal

equilibrium is also to apply the methods hydrodynamics and thermodynamics and

treat the matter as a bulk. Small perturbation or fluctuations from local equilibrium

form the basis of the study of transport properties like viscosity, thermal conductivity,

relaxation time, etc. Therefore, in order to study such properties, we need the system

under consideration be in thermal equilibrium. The question in our case is whether

or not the medium created in heavy ion collisions thermalizes, at least approximately.

One should note that a large number of particles are produced in heavy ion collisions

at RHIC and the LHC. At RHIC the number is around 7000 and at the LHC it goes

above 10,000. In terms of number of particles, the system can be treated as a bulk

system.

Although we have no hard proof of thermalization yet, there is circumstantial

evidence that helps us convince ourselves that the the medium produced at RHIC

and LHC most likely equilibrates thermally, and it does so early in the evolution.

How early? Again, no hard evidence. Based on several phenomenological arguments

it is now more or less a consensus that the system thermalizes at τ0 6 1 fm.

A piece of evidence for thermalization is the observation of a large amount of flow

of the observed particles. We will discuss flow in Section 2.4. Here, in the context of
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thermalization, we note that experiments found a large amount of asymmetric flow

called the elliptic flow. This kind of flow indicates multiple interactions among the

constituents of the medium. A significant number of such interactions hint at the

thermalization of the system early in its evolution.

An ddditional evidence, the evidence for chemical equilibrium, is provided by the

excellent agreement of the observed particle multiplicity ratio with the ratio com-

puted using the thermal equilibrium distribution of produced particles. Figure 2.6

compares the experimentally observed ratios of hadrons to the ratio computed using

a thermal model, which assumes thermal equilibrium of the hadrons. Authors of

Ref. [22], where this figure is taken from, state that: “The results demonstrate quan-

titatively the high degree of equilibration achieved for hadron production in central

Au+Au collisions at RHIC energies.” One, however, should also note that the particle

ratios may not be a very reliable signal of an equilibrated medium as explained in

[23]. This means that we also need to look for other piece of evidence. An excellent

agreement of ideal hydrodynamic computations experimentally observed values for

soft particles (disused in the next section), for example, may the an additional evi-

dence. To paraphrase in slightly different way, the success of hydrodynamic models

in explaining the collective behavior of soft particles observed at RHIC and the LHC

has provided enough confidence to assume that the system is equilibrated early in the

evolution.

2.4 Collective flow

One of the most striking findings from RHIC experiments is the observation of

strong collective flow of produced particles. In particular, the observation of high

elliptic flow was startling to the heavy heavy ion community at the beginning. Elliptic

flow is an anisotropic flow observed in non-central collisions and is unique to heavy ion

collisions. It is connected to initial geometry of collisions and, therefore, experimental
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Figure 2.6: Comparison of experimentally observed particle multiplicity ratios com-
puted using a thermal model. This figure is taken from Ref. [22].

data on this flow provides important information on the early stage of hydrodynamic

expansion.

Anisotropy in flow largely results from the hydrodynamic response to the initial

anisotropy in collision geometry. Figure 2.7 illustrates two different collision scenar-

ios. The off-central collision, shown in the left panel, shows the creation of an almond

shaped excited region. This spatial anisotropy in collision results in anisotropic pres-

sure gradients. As the system undergoes hydrodynamic expansion and hadronizes,

the final particles show anisotropic flow. It is clear that measured anisotropic flow

gives us information on hydrodynamic response and, hence, on the properties of the

matter created after the collision. The study of elliptic flow data from RHIC was one

of the major sources leading to the discovery that the matter created in the collision

(QGP) behaves like a perfect fluid [13, 14, 15, 16, 17].

Anisotropic flow studies use Fourier expansion of the azimuthal distribution of

produced particles [24]. The azimuthal shape of the distribution varies with centrality

and the components of the Fourier expansion provide the different harmonics of flow.
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Figure 2.7: Collision geometry and the elliptic flow. Image on the left shows an
off-center collision that creates an almond shaped excited medium. The pressure
gradients result in a momentum gradient which leads to elliptic flow. The image on
the right shows a central collision, which has more isotropic collision geometry and
results in smaller elliptic flow. This image is created by Masashi Kaneta.

The Fourier expansion is written as

1

N

dN

dφ
= 1 + 2v1 cos (φ−ΨRP ) + 2v2 cos [2 (φ−ΨRP )] + · · · (2.4)

The Fourier coefficients are given by

vn = 〈cos [n (φ−ΨRP )]〉 (2.5)

Here ΨRP is the reaction plane angle. The average is taken over events. The

reaction plane is spanned by the collision axis (z-axis in the figure) and the impact

parameter. The components v1 and v2 are directed flow and elliptic flow, respectivey.

Higher order flows have also been measured. The values of v2 are significantly high.

RHIC data for v2 at
√
s = 200 GeV Au+Au collisions shows elliptic flow as high

as ∼ 15%. This means that there are about 30% more particles in the direction

of the reaction plane than out of plane. Figure 2.8 shows hydrodynamic model [25]

calculations of v2 with different values of η/s against the PHOBOS [26] and STAR [27]
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Figure 2.8: Hydrodynamic model calculations of v2 from Ref. [25] compared with
RHIC data. Left image shows comparison with PHOBOS data vs centrality. Image
on the right shows comparison with STAR data. Figure is taken from Ref. [25]

data. We notice that, according to this model, values of η/s between the KSS bound

(1/4π = 0.08) and twice this bound are consistent with the data.

One final note in our brief discussion of elliptic flow: RHIC data on v2 demon-

strates an explicit nature of quark constituency of the medium created in the heavy

ion collision. The left panels of Fig. 2.9 shows v2 for mesons (two quarks) and baryons

(three quarks) plotted against pT and KET . We see that v2 of mesons and baryons

data diverge. When the data are scaled with number of constituent quarks, all data

(especially in the plot against KET/nq) merge together is a single line. This demon-

strates that patrons are the relevant degrees of freedom during the time elliptic flow

is generated.

2.5 Jets

We will discuss jets very briefly here, enough to provide a little context for jet

quenching, which is one of the most important discoveries of RHIC experiments. Jet

quenching has provided an important piece of evidence for the creation of partonic

matter, the quark-gluon plasma.

Jets are a group of several high pt hadrons all moving approximately in the same

direction. They originate from the hard scattering of incoming partons in hadron-
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Figure 2.9: Quark scaling of elliptic flow for
√
s =200 GeV Au+Au collisions. When

scaled with number of constituent quarks, the baryon and meson data lies on the
same curve. Figure is taken from Ref. [28]

hadron or nucleus-nucleus collisions. In the case of hadron-hadron collisions, high

energy partons scatter off each other with large transverse momenta. These high pt,

colored partons radiate gluons which, in turn, split into quarks. These quarks ulti-

mately become hadrons and form jets. When triggered correlations with associated

hadrons are measured, large correlations are found on the near side (the side of the

chosen trigger) as well as on the opposite side. This is the case of back to back jets.

Back to back jets can be understood from momentum conservation. Momentum car-

ried by a jet should be balanced by a jet in the opposite direction. This is actually

what is observed in proton-proton collisions.

The so called quenching jets or more accurately the away side jet was observed

from RHIC experiments [29]. Figure 2.10 shows a STAR analysis [29] that compares

the triggered correlations in azimuthal angle for proton-proton, d+Au and Au+Au

collisions. We see back to back correlations in the case of p+p collisions. We also see

some away side correlations, though less than in the pp case, in 0-20% d+Au collisions.

However in the case of central Au+Au collisions, the away side jet is conspicuously

missing. On the other hand, the number of direct photons, which do not interact with

the partonic medium, do not show this suppression [30]. This suppression of the away

side jet is the well known jet quenching in heavy ion collisions and is one of the major
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Figure 2.10: Measurements of azimuthal correlations in pp, d+Au and central Au+Au
collisions. In central Au+Au collisions, the away side jet is missing, while jets on both
sides show their full presence in pp collision. Figure is taken from Ref. [13]

discoveries at RHIC. Jet quenching results serve as a 3 dimensional tomography for

the study of the medium created after the collision.

It is interesting to note that jet suppression had been predicted long before. Back

in 1982, Bjorken [31] had said, “high energy quarks and gluons propagating through

a quark gluon plasma suffer differential energy loss via elastic scattering from quanta

in the plasma. An interesting signature may be events in which the hard collision

occurs near the edge of the overlap region, with one jet escaping without absorption

and the other fully absorbed.” Later, Wang and Gyulassy [32] supplemented this idea

with an important additional mode of energy loss - the energy loss to the medium by

gluon bremsstrahlung. As we highlight shortly, RHIC experiments confirmed the jet

suppression and suppression of high pt particles in the spectra.

A simple qualitative explanation of jet quenching is the following. The large

momentum taken away by the patrons, which fragment into near side jets (φ = 0),
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Figure 2.11: Jet quenching in heavy ion collision. A highly energetic parton near the
surface of the medium escapes. The momentum conserving partner on the other side
loses energy and cannot manage escape. Image: Lawrence Berkeley National Lab.

must be conserved. This results in a jet on the other side (φ = 180o). We see those

back to back jets in pp collisions and also in d+Au collisions, as is already mentioned.

In the case of Au+Au collisions, a dense partonic medium is created and the jets

created near the surface of the medium escape and fragment into high pt hadrons.

The partons that go the other way encounter the dense partonic medium and lose

energy before they fragment. Figure 2.11 illustrates this jet quenching scenario.

As a consequence of jet quenching, there is more suppression of high pt particles

in heavy ion collisions than one would expect if the collisions were a superposition

of p+p collisions. Suppression, or lack thereof, may be quantified using the nuclear

modification factor, RAB for A+B collisions. It is defined as

RAB(pt) =
dNAB/dηd

2pt
TABdσnn/dηd2pt

(2.6)

The nuclear thickness function (overlap integral), is TAB = 〈Nbinary〉/σpp,inelastic, is

calculated using the Glauber model, and σnn is the nucleon-nucleon scattering cross

section. If a nuclear collision is just a superposition of nucleon-nucleon collisions, we

would expect a unit ratio. It deviates from unity if there is a modification. Figure 2.12

shows the results from STAR [33], PHENIX [34, 35], and ALICE [36].

The nuclear modification factor measures nuclear effects, i.e., effects of the nucleus
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Figure 2.12: Nuclear modification factor in central and peripheral Au+Au collisions at
RHIC (STAR, PHENIX) and Pb+Pb collisions at LHC (ALICE). Peripheral collisions
have little nuclear effects (roughly like in pp collisions). The image on the right also
shows PHENIX measurements of direct photons in Au+Au

√
s = 200 GeV collisions.

Direct photons escape the medium without modification and show no suppression.
The Image on the left is taken from Ref. [37], and that on the right is taken from
Ref. [35].

in bulk. In the absence of nuclear effects the factor is expected to be unity, as shown

by the direct photon data. The reason for the suppression is clearly the effect of the

dense partonic medium created in collisions. In other words, it is a strong indication

for the formation of quark-gluon plasma.

2.6 Correlations and the Ridge

Measurements of jet quenching and suppression of high pt particles are examples

of two-particle correlation measurements. As has been highlighted in Chapter 1, a

correlation study of pt fluctuations is the major goal of our investigation. We discuss

the two-particle pt correlations in detail in Chapter 5. Here, we briefly discuss the

general features of the correlations used and measured in the field with specific focus

on the short and long range correlations as well as the baseline of correlations called

the “ridge”. The baseline, also called the “offset”, is one of the observables we are
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Figure 2.13: Triggered dihadron correlation measurements by STAR [38] for central
Au+Au collisions at

√
s = 200 GeV. Source of this color image: Ref. [39].

interested in. We will discuss the offset in the chapter on observables (Chapter 6).

Besides jet quenching, a number of correlation measurements have been made

in RHIC and LHC experiments. These measurements show complex valleys and

ridges in relative azimuthal angle and pseudorapidity. Figure 2.13 shows triggered

correlation measurements by STAR [38]. These results show the short range near side

(∆φ = 0) jet peak at ∆η = 0 and correlation in the longer range in ∆η. The ridge is

the residual baseline structure left after one subtracts the jet and flow component v2

from the correlations. It is obvious from the figure that the ridge in relative rapidity

has much longer range that the size of the jets.

An even more dramatic long ridge was demonstrated by PHOBOS measurement

results, shown in Fig. 2.14. This result is also for central Au+Au collisions at

√
s = 200 GeV. The acceptance in ∆η of this measurements is from -4 to 2. This

result demonstrates that the ridge can extend to 6 units in ∆η. What is interesting is

that range of this big extension in ∆η is beyond any effect due to jets, resonances or

hydrodynamic flows. The origin of the ridge must be from very early collision dynam-
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Figure 2.14: Long and short range correlation in ∆η for
√
s = 200 GeV Au+Au

collisions measured by PHOBOS with 0-10% centrality. Figure is from Ref. [44].

ics and from initial conditions. It should also be noted that the ridge phenomenon

occurs in central collisions.

A recent explanation based on flux tubes and glasma initial conditions is offered

in Ref. [40]. Other theoretical explanations of the ridge were discussed in Refs. [41]

and [42].

In our model, we use hydrodynamic evolution of two-particle pt-correlations and

compute the offsets along with other observables. These observables have also been

measured experimentally [43]. The observables and their experimentally measured

values are discussed in detail in Chapter 6. The results from our computations of the

offsets and comparison with experimental results are discussed in Chapter 8.
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CHAPTER 3

HYDRODYNAMICS

Hydrodynamics or fluid dynamics is the study of dynamics of fluid in bulk. It

consists of simple but general techniques and does not require a microscopic descrip-

tion of the constituent particles. The number of particles has to be large enough

such that the fluid can be regarded as continuous rather than a system of discrete

particles. It assumes local thermal equilibrium and is thus applicable as long as the

inter-particle scattering is frequent enough to maintain local thermal equilibrium. In

other words, the mean free path λ = 1/nσ (n = density and σ = scattering cross

section) has to be smaller than the length scale over which the thermal properties

of the system varies. The system of fluid under study is divided into fluid cells such

that each cell is small enough to regard properties like density, pressure, etc. constant

within a cell but big enough to contain large number of particles so as to make it

continuous. Hydrodynamics becomes indispensable for matter in bulk because it is

simply hopeless to track and solve equations of motion for individual particles.

The idea of applying bulk matter treatment in elementary particle collisions goes

back to the 1950s of the last century, long before QCD was discovered and long before

there were heavy ion collision experiments. It started when Fermi [45] suggested the

use of statistical methods to calculate the multiplicities and spectra of the mesons

produced in high-energy collisions. The idea was extended by Landau [46] with his

first use of relativistic hydrodynamics to describe the expansion of the medium after

collisions. Later, Hagedorn [47, 48] made a major contributions on the possibility

of limiting temperature in the hadronic phase and in thermal equilibrium. In 1983

Bjorken came up with a simple boost invariant hydrodynamic model [49] and gave an

estimate of initial energy density. Interest in hydrodynamic models received a great
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boost after the data from RHIC experiments [50, 51] turned out to be in good agree-

ment with calculations based on relativistic hydrodynamics [52, 53]. This discovery

is the main reason that led RHIC to announce the creation of “perfect liquid” [17].

Currently, hydrodynamics is a theoretical branch of its own in heavy ion physics. It

is arguably the best theoretical framework to describe the space-time evolution of

strongly interacting matter produced in ultra-relativistic collisions.

It should be noted that hydrodynamics best applies only to bulk matter consist-

ing of the so called “soft” particles, the particles with transverse momenta, pt, less

than or around 2 GeV. However, more than 90% of the particles produces RHIC or

LHC collisions fall into this category. Hydrodynamics is not suitable for the “hard”

particles like highly energetic “jets”, which have much larger transverse momenta.

The assumption that there has to be local thermal equilibrium is fairly strong espe-

cially when one considers such high energy collisions in extremely small (a few fm)

space and time scales. However, the particle spectra and the success of hydrodynamic

calculations indicate that the system equilibrates very early (∼ 1fm).

3.1 Ideal hydrodynamics

We start from the simplest case: one-component non-relativistic ideal fluid dy-

namics. The degrees of freedom are the flow velocity v(t,x), the pressure p(t,x) and

the mass density ρ(t,x). They are related [54] by the “continuity equation”:

∂ρ

∂t
+∇.(ρv) = 0 (3.1)

and the “Euler equations”:

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p (3.2)
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In order to close the system of equations, an equation of state p = p(ρ) must be

included.

In the relativistic case, first of all we need to realize that mass density is not

properly defined. One uses the total energy density ε(x) replaces the mass density

of non relativistic case. Also, the four-velocity uµ ≡ dxµ/dτ should replace the

regular three-velocity of the fluid. The four velocity uµ, or “flow”, remains ambiguous

especially in the context of dissipative flow. It leaves open the question: flow of what?

The precise meaning will be made clear in the next section. Here x = (t,x) and τ is

the proper time given by dτ 2 = dt2 − dx2. The basic equations are conservation of

current and energy-momentum:

∂µN
µ
i = 0 (3.3)

and

∂µT
µν = 0, (3.4)

Using suitable expressions for Nµ
i and T µν in these conservation equations, one ob-

tains [54, 55, 56, 57, 58, 59, 60, 61] the equations of relativistic hydrodynamics. The

label i in (3.3) refers to the species of the particles constituting the conserved current,

e.g., the baryon species.

For an ideal fluid (labeled by the subscript (0) below), currents and the energy-

momentum tensor are given by

Nµ
i(0) = nuµ (3.5)

T µν(0) = (ε+ p)uµuν − pgµν = εuµuν − p∆µν (3.6)

Here gµν is the Minkowski metric tensor diag(1,−1,−1 − 1), and ∆µν is the

projection tensor operator that projects a tensor into the direction orthogonal to uµ.

A tensor is projected into the directions of uµ or normal to uµ by multiplying it by uµ
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or ∆µν , respectively. The former is a time-like projection and the later is space-like.

In the local rest frame uµ = (1, 0, 0, 0) and ∆µν = (0,−1,−1,−1). Note that, as

mentioned in Chapter 1, we use the mostly minuses convention for the Miskowski

metric and the speed of light is c = 1 so that uµu
µ = 1.

Relativistic hydrodynamics in heavy ion collisions is used mainly to model the

evolution of baryon free quark-gluon plasma after the system thermalizes. Thus in

baryon free case, we conserved baryon current (3.3) is not defined and equations are

solely developed from the conservation of energy-momentum (3.4).

In order to get the equations of relativistic hydrodynamics one uses the conser-

vation of energy-momentum, ∂µT
µν = 0, and projects respectively into uµ and ∆µν .

Projection along uν , i.e., uν∂µT
µν = 0, gives the energy equation:

Dε+ (ε+ p)∂µu
µ = 0 (3.7)

And, projection orthogonal to uν , i.e., ∆λ
ν∂µT

µν = 0, gives the momentum equation:

(ε+ p)Duλ −∇λp = 0 (3.8)

Here D = uµ∂µ and ∇λ = ∆λµ∂µ. Equations (3.7) and (3.8) are equations of rela-

tivistic ideal fluid dynamics. In the non-relativistic |v| � 1, D ≈ ∂/∂t + v · ∇ and

∇i ≈ ∂i. Also, in this limit ε ≈ ρ. These relativistic equations reduce to equations

(3.1) and (3.2) in the non-relativistic case, |v| � 1.

3.2 Dissipative hydrodynamics

In order to include dissipation, like viscosity, heat conduction etc, dissipative

terms should be added to the energy-momentum tensor of ideal hydrodynamics. In

this work, only viscous dissipation is considered. The form of the dissipative part of

the energy momentum tensor, and hence, the equations of dissipative hydrodynamics
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depend on how the local flow velocity uµ is defined. There are two standard choices:

Eckart’s and Landau’s approaches.

Eckart’s [62] approach, in the context of heavy ion collisions, is to assign flow

velocity to the conserved baryon current. In other words, uµ is the velocity of the

baryon number flow:

uµ =
Nµ

√
NνNν

(3.9)

Landau’s approach [54] is to assign velocity to the flow of energy. Thus, in this

approach, uµ is the velocity of energy flow. Since energy flow is uνT
µν (projection of

energy momentum tensor in the direction of flow), the definition is

uµ =
uνT

µν

√
uαTαβuβ

=
1

ε
uνT

µν (3.10)

Thus, εuµ = uνT
µν , i.e., in the absence of baryon density all momentum density is

due to the flow of energy in the Landau frame. In the Eckart frame, it is due to actual

momentum current of baryon number flow.

It is clear the Landau frame is better suited to the study of the evolution of

quark-gluon plasma created in relativistic heavy ion collisions. We therefore choose

this frame, the Landau definition of flow, in our work. Also, we only consider viscous

dissipation and do not consider dissipation due to heat conduction.

Writing Πµν for the viscous dissipative term, the energy-momentum tensor is:

T µν = T µν(0) + Πµν = εuµuν − p∆µν + Πµν (3.11)

This does not mean anything unless Πµν is specified. A standard way to get an

expression for Πµν is to make use of the second law of thermodynamics, i.e., entropy

of the system never decreases:

∂µs
µ ≥ 0 (3.12)
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Tzx = ⌘rzvx

Figure 3.1: Shear viscosity results from shearing of fluid layers. In the process there
is momentum transfer between the layers.

The equality sign here applies to the case of ideal fluid dynamics, in which entropy

is conserved. The expression for sµ in the dissipative case depends on the order of

gradients (of flow, temperature) corrections we want to keep in the expansion about

the ideal case sµ = suµ. In first order hydrodynamics, one keeps the first order

correction and obtains the relativistic Navier-Stokes equations.

There are two kinds of viscous dissipation: bulk and shear viscous dissipation.

Bulk viscosity arises in expansion and contraction of volume and shear viscosity is

related to the momentum transfer when two layers of fluid move past each other

(see Fig. 3.1). The contribution of bulk viscosity is negligible in comparison to that

of shear viscosity. Bulk viscosity may, however, have some contribution around the

critical temperature [63]. In this work, we ignore bulk viscosity - the only dissipation

we consider is the shear viscous dissipation.

The dissipative term Πµν in Eqn.(3.11) is accordingly broken up into two terms:

Πµν = πµν + ∆µνΠ, (3.13)

where πµν is the shear viscous tensor and is traceless (πµµ = 0), and Π is the bulk

pressure.

Let us first get the equations of viscous hydrodynamics in the general form -
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dissipative versions of (3.7) and (3.8). Taking the time-like component of energy-

momentum conservation, uν∂µT
µν = 0, we get

Dε+ (ε+ p)∂µu
µ − Πµν∇(µuν) = 0 (3.14)

Similarly, picking up the components normal to the energy-momentum conservation,

i.e., using ∆λ
ν∂µT

µν = 0 one obtains

(ε+ p)Duλ −∇λp+ ∆λ
ν∂µΠµν = 0 (3.15)

Here ∆(µν) = 1
2
(∇µuν +∇νuµ), the symmetrized gradient of flow.

For the zero chemical potential case from thermodynamics we know that ε+p = Ts

and Tds = dε. The later gives TDs = Dε and when they are used in (3.14) we get

TDs+ Ts∂µu
µ − Πµν∇(µuν) = 0 (3.16)

3.3 First order dissipation and diffusion of transverse flow fluctuations

It should be noted that ∂µs
µ = ∂µ(suµ) = Ds+ s∂µu

µ, and Eqn.(3.16) now gives

∂µs
µ =

1

T
Πµν∇(µuν)

=
1

T
Πµν(∇<µuν> +

1

3
∆µν∇αu

α), (3.17)

Here, ∇<µuν> = 2∇(µuν)− 2
3
∆µν∇αu

α. From Eqn (3.13) and Eqn (3.17), we see that

in order to make entropy production positive definite, i.e., to ensure Eqn (3.12) holds

one must have

πµν = η∇<µuν> (3.18)

Π = ζ∇αu
α, (3.19)
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where η, ζ ≥ 0 are the coefficients of shear and bulk viscosity respectively. These

results are the expressions for the coefficients of shear and bulk viscosities for rela-

tivistic Navier-Stokes theory. With (3.18) and (3.19), the expression for Πµν (3.13)

becomes

Πµν = η(∇µuν +∇νuµ) + (ζ − 2

3
η)∆µν∇αu

α. (3.20)

This is the expression for the dissipative term Πµν in the first order, or Navier-

Stokes, theory. When this expressions are substituted in (3.14) and (3.15), one obtains

relativistic Navier-Stoke equations.

Transverse modes of hydrodynamic equations are diffusion modes while longitudi-

nal modes are sound modes. It is the transverse modes we are interested in since we

are going to relate the fluctuations in the transverse flow, and hence fluctuations in

transverse momenta, to experimentally measured transverse momentum correlations.

We now linearize equations of first order relativistic hydrodynamics and take a

transverse component. Let us consider small fluctuations on flow and other properties

over their equilibrium values:

ε = ε0 + δε(t, z)

p = p0 + δp(t, z)

uµ = (1,~0) + δuµ(t, z) (3.21)

For simplicity in the argument, we have taken the perturbation as function of time

and the coordinate z (later, it will be taken as the beam axis of collisions and x and

y then become the transverse coordinates). Taking a transverse component (λ = y)

in (3.15) and linearizing it gives

(ε0 + p0)∂tδu
y + ∂zδΠ

zy = 0. (3.22)
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Note that D = uµ∂µ = d/dτ in general. In the local rest frame (ui = 0), D = ∂t.

From (3.20),

Πzy = η(∇yuz +∇zuy) + (ζ − 2

3
η)∆zy∇αu

α. (3.23)

Linearizing (3.23) using (3.21), we get

δΠzy = −η0∂zδu
y (3.24)

Equations (3.22) and (3.24) together now give

∂

∂t
δuy = ν

∂2

∂z2
δuy (3.25)

Here ν = η0/(ε0 + p0). This is a diffusion equation. We see that perturbation in

flow diffuses in the medium with time. We know ε + p = Ts and now see that the

equilibrium value of η/Ts constitute the diffusion coefficient. Larger viscosity with

constant temperature and entropy density means larger diffusion of transverse flow

fluctuations.

3.4 Second order dissipation and causal diffusion

We see that transverse flow fluctuations diffuse in time in the medium and the

evolution of the fluctuations is governed by diffusion equation like (3.25). There is

however a well documented (see, for example [64, 65] and references therein) serious

shortcoming in this kind of regular or “first order” diffusion equation. This is es-

pecially true if we want to use it for medium created in ultra-relativistic heavy ion

collisions, when the fluid cells may have fairly good fraction of speed of light. The

regular diffusion equation allows signals to propagate instantly and therefore the so-

lutions violate causality. The other stated problem is the the stability of solutions

for relativistic fluid [66]. Nonconformity with special relativity may not be a concern
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for the fluid dynamics of most fluids. But the case of fluid consisting of relativistic

quark and gluons is obviously a different matter.

Cattaneo devised a technique [67] to get around the problem by modifying Fourier’s

law of heat (which leads to the heat equation , one of the most common examples

of diffusion equation). He added a time derivative of heat flux with relaxation time

in Fourier law and it resulted in a hyperbolic equation, instead of the parabolic heat

equation. Such an equation in mathematics literatures is known as the telegraph

equation. Cattaneo’s extra term was made up in order to preserve causality. It was

later inferred from the second order Israel-Stewart theory [68] of fluid dynamics.

Second order hydrodynamics is built by taking corrections up to the second order

gradients, in the way first order hydrodynamics is built using corrections up to the

first order. The ntropy current, up to the second order gradients, is given by [56, 59]

sµ = suµ − β0

2T
uµΠ2 − β2

2T
uµπαβπ

αβ (3.26)

where, of course, small fluctuations from equilibrium of the medium are assumed.

Now we take the divergence of (3.26). The first term on the right gives 1
T

Πµν∇(µuν),

as before. The second term gives us Π2D
(
β0

2T

)
+ β0

2T
DΠ2 + β0

2T
Π2∂µu

ν . The last term

produces D
(
β2

2T

)
παβπ

αβ + β2

T
παβDπαβ + β2

2T
παβπ

αβ∂µu
µ. Finally, manipulating the

first term a little bit as done previously and putting together all the terms we obtain

[56, 59] the expression for entropy production:

∂µs
µ =

παβ

2T

[
∇<αuβ> − παβTD

(
β2

T

)
− 2β2Dπαβ − β2παβ∂µu

µ

]

+
Π

2

[
2∇αu

α − ΠTD

(
β0

T

)
− β0Π∂µu

µ − 2β0DΠ

]
(3.27)

Here the coefficients β0 and β2 are given by β0 = τΠ
2ζ

and β2 = τπ
2η

[56]. The terms τπ

and τΠ are relaxation times corresponding to shear and bulk viscous flow, respectively.



www.manaraa.com

38

They characterize the times in which the second order (Israel-Stewart) hydrodynamics

relaxes to the first order (Navier-Stokes) case.

As in the first order case, one needs to ensure that ∂µs
µ is positive definite. This

is always the case if

παβ = η

[
∇<αuβ> − παβTD(

β2

T
)− 2β2Dπαβ − β2παβ∂µu

µ

]
(3.28)

Π = ζ

[
2∇αu

α − ΠTD

(
β0

T

)
− β0Π∂µu

µ − 2β0DΠ

]
(3.29)

As mentioned earlier, we ignore bulk viscosity and thus only consider shear viscous

dissipation. Eqn (3.28) can be approximated [69, 70] to the Maxwell-Catteneo relation

for παβ:

τπDπαβ + παβ = η∇<αuβ> (3.30)

Thus, Israel-Stewart theory indeed gives us the Maxwell-Cattaneo relation. Now we

linearize (3.28) or (3.30) using (3.21). The result is

δπµν = η0

(
∂µδuν + ∂νδuµ − 2

3
gµν∂αu

α

)
− τπ∂tδπµν (3.31)

This gives us

τπ∂tδπ
zy + δπzy = −η0∂zδu

y (3.32)

Now from (3.22) and (3.32) one gets

τπ
∂2δuy

∂t2
+
∂

∂t
δuy = ν

∂2

∂z2
δuy (3.33)

This is the causal diffusion equation for transverse flow fluctuation. We see that the

relaxation time τπ moderates the speed and signals cannot propagate at superluminal

speed. When τπ vanishes we recover the regular diffusion equation. However, one
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needs to be careful (especially from a numerical point of view) since in that limit the

speed
√
ν/τπ becomes infinite.

Fluctuations in flow means fluctuations in momentum current. In the co-moving

frame (where the average uy = 0), the transverse momentum current of the fluid is

given by gt ≡ δT0y = T0y− < T0y >≈ (ε0 + p0)δuy [71]. In terms of the transverse

momentum current δT0y, the second order diffusion equation (3.33) can be written as

τπ
∂2δT0y

∂t2
+
∂δT0y

∂t
= ν∇2

zδT0y (3.34)

Again, note that the diffusion coefficient ν is given by

ν =
η

Ts
(3.35)

We see that this coefficient contains an important ratio we often encounter in the

physics of heavy ion collisions - the ratio of viscosity to entropy density, η/s.

The excess of momentum current over the average diffuses in the medium accord-

ing to (3.34). In the limit τπ → 0, this causal diffusion equation becomes identical to

the regular diffusion equation. It should also be noted that the causal diffusion equa-

tion consists of two parts: a wave equation and a diffusion equation. In absence of the

first order time derivative it becomes a wave equation describing the characteristic

wavefronts traveling with a speed of
√
ν/τπ . The presence of both wave propagation

and diffusion leads to an interesting consequence in one of our observables. This

feature will be discussed in detail in Chapter 8.

In Chapter 5, we extend this idea of diffusion of transverse momentum fluctuations

to the more general concept of two-particle correlations. This will make the equations

comparatively more complicated. We will employ Bjorken boost invariance in order

to simplify the case. Boost invariance is briefly discussed in Section 3.5.
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Figure 3.2: Flow fluctuation: excess from the ensemble average, δuy = uy− < uy >
There is shear between layers since uy has gradient along z. Shear viscosity involves
momentum transfers and it goes on until the flow gets to its equilibrium level. Image:
Sean Gavin (slightly modified here).

3.5 Bjorken model and boost invariance

Bjorken’s hydrodynamic model [49] is a simple hydrodynamic model that employs

a symmetry known as the boost invariance. Because of the simplification it offers in

relativistic hydrodynamic calculations as applied to nuclear collisions, it has been

applied in almost all hydrodynamic models heavy ion collisions. Bjorken model has

been an an important booster for the application of relativistic hydrodynamics to

nuclear collisions. The important step before this model was the introduction of the

Landau model in the early history of hydrodynamic models [46]. Bjorken’s boost

invariance is based on the observation of the flatness of the rapidity distribution of

charged particle multiplicity dNch/dη in the mid rapidity region. This means the

mid rapidity region is invariant under Lorentz boosts and the longitudinal (along

the collision axis z) flow velocity can be put in the form vz/t, like one dimensional

Hubble expansion along the z-axis. All thermodynamic quantities used to describe

the mid-rapidity region should then depend only on the longitudinal proper time

τ =
√
t2 − z2 and the transverse coordinates x and y. Figure 3.3 represents the

idea of Bjorken’s boost invariance expansion. With the simplicity brought about by

the boost invariance, Bjorken was able to reduce the ideal relativistic hydrodynamic

equations into a simple form that can be solved analytically. He was then able to
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  z/t = constant
Freezeout 

Thermalization

Figure 3.3: Bjorken boost invariant expansion. Hydrodynamic expansion starts after
the thermalization time τ0 ≈ 1 fm and lasts until the freeze out to hadrons. This figure
is taken from the Bjorken’s seminal paper [49] on boost invariant hydrodynamics. The
text and lines in red are added labels.

estimate the initial energy density of the matter formed in heavy ion collisions.

Since we use Bjorken boost invariant expansion in our model, it is relevant to dis-

cuss its main concepts, especially the mathematical simplicity it brings about briefly.

We first note that the flow velocity for longitudinal expansion with boost invariance

can be written as

ūµ = γ(1, 0, 0, z/t) = (t/τ, 0, 0, z/τ) (3.36)

Here, γ is the Lorentz factor γ = 1/
√

1− v2 for longitudinal boost. The bar is used

in order to reserve uµ for flow in a different coordinate system we are going to use

here (the Milne coordinates). We note that this form of flow already embodies the

boost invariance. We can also write the flow in terms of proper time and rapidity

variable. The rapidity variable is defined as

y = tanh−1vz =
1

2
ln

1 + vz

1− vz =
1

2
ln
E + pz

E − pz (3.37)
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where E = p0 is the energy of the particle or fluid cell in question. For Bjorken boost

invariance expansion vz = z/t and the flow rapidity reduces to spacetime rapidity

η =
1

2
ln
t+ z

t− z (3.38)

We then see that

t = τ coshη z = τ sinhη (3.39)

The four flow (3.36) can thus be written as

ūµ = ( coshη, 0, 0, sinhη) (3.40)

This simplicity brought about by the Bjorken longitudinal boost invariance be-

comes even more revealing and its application in hydrodynamic equations becomes

even simpler if we use the Milne coordinates xµ = (τ, x, y, η). In this coordinate

system the four-flow (3.40) becomes

uµ = (1, 0, 0, 0). (3.41)

This follows since uτ = 1 and uη = −ūt sinhη/τ + ūz coshη/τ = 0. This is interesting

- there is no flow in the Milne coordinates. The coordinate system instead stretches

by right amount to maintain the Bjorken boost invariance. As far as calculations

are concerned, the flow (3.41) cannot get any simpler. However, this might be a

little deceiving since the affine connections (the Christoffel symbols) of the Milne

coordinates are not all zero. It turns out that only two are nonzero and they are

Γηητ = 1/τ and Γτηη = τ . Therefore, wherever necessary, we need to replace derivatives

by covariant derivatives with these Γ′s. For example,

∇,µu
µ → ∇;µu

µ = ∂;µu
µ = ∂µu

µ + Γµµνu
ν = Γηητu

τ = 1/τ (3.42)
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We know D ≡ uµ∂µ = d/dτ . Now with (3.42), Eqn. (3.14) for ideal hydrodynamics

(without the last viscous term) becomes

dε

dτ
+
ε+ p

τ
= 0 (3.43)

With p = ε/3 for relativistic gas, one then gets

ε(τ) = ε(τ0)
(τ0

τ

)4/3

, (3.44)

which is one of the famous Bjorken results.

As mentioned before, we are going to use the Bjorken boost invariant expansion in

the hydrodynamics of two particle correlation in Chapter 5. In Chapter 4, we discuss

the entropy production equations for first and second order hydrodynamics. Here,

let us obtain evolution equation for entropy density for ideal hydrodynamics. We

first note that in ideal hydrodynamics entropy conserves, i.e., ∂µs
µ = ∂µ(suµ) = 0.

Applying the same technique we used to get (3.43) and using ε+ p = Ts, we obtain

ds

dτ
+
s

τ
= 0, (3.45)

which gives s(τ) = s(τ0)τ/τ0, another Bjorken result, which is basically just a state-

ment of entropy conservation in a system that expands at the rate of 1/τ .

We use the techniques mentioned here to get the entropy production equations

in Chapter 4. The results we obtain are the standard results already obtained in

the last decade in the context of heavy ion physics. However, since we use the first

and second order entropy production equations in our model, we are going to briefly

demonstrate how they are obtained.
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CHAPTER 4

VISCOSITY AND ENTROPY

Viscosity is a measure of diffusion of momentum parallel to the flow velocity and

transverse to the gradient of the flow velocity [72]. Basically, it represents the ability

to transport momentum. Shear viscosity arises as layers of fluid shear pass each other,

as illustrated in Fig. 3.1. Bulk viscosity arises in compressible fluid when it expands

or contracts. As we have already stated in Chapter 3, we consider only shear viscosity

in our work. In the context of quark-gloun plasma, shear viscosity is the dominant

mode of dissipation. It has been a standard practice to use the the ratio η/s rather

than just η to describe viscous properties of fluids in relativistic hydrodynamics. This

is similar to using kinematic viscosity η/ρ = η/mn (ρ = density, m = mass, and n

= number density of fluid particles) in Newtonian fluid dynamics. We are familiar

with the convenience of kinematic viscosity over the dynamic viscosity. First the ratio

appears in many useful hydrodynamic quantities, as in the Reynolds number. Also,

it is the kinematic viscosity that determines the viscous term in the Navier-Stokes

equations. Second, η varies widely in orders of magnitudes if one compares viscosities

of various fluids while η/s is better in this respect. In the relativistic case, η/ρ or

η/mn is not suitable since the number of particles are not conserved. Thus, η/s is

most often taken as the kinematic viscosity for a relativistic fluid.

The main subject of our study is the diffusion of transverse momentum fluctuations

and correlations. It was pointed out in Chapter 3 that the strength of diffusion, the

diffusion coefficient ν in equation ( 3.34), is determined by η/s. In Chapter 5, we

develop the diffusion equations for a two-particle transverse momentum correlation

function. The structure of the diffusion coefficient however remains the same. We

use a general temperature dependent η/s in our model and this leads to temperature



www.manaraa.com

45

and, hence, time dependent diffusion and relaxation coefficients. The main focus of

this chapter is to highlight the form of η/s as a function of temperature as used in

our model.

4.1 Viscosity

RHIC experiments have shown that the matter created in collisions of heavy ions is

strongly interacting quark-gluon plasma, not the weakly interacting QGP originally

expected from perturbative QCD calculations. The good agreement of radial and

elliptic flow data with ideal hydrodynamics has indicated that the matter has very low

viscosity. On the other hand, lattice calculations have shown that the entropy density

of this matter differs from Stephan-Boltzmann values only by ∼10% for temperatures

higher than ∼ 2 TC (where TC ≈ 170MeV is the critical or crossover temperature

from the quark-gluon plasma to hadronic matter). In other words, according to lattice

QCD calculations, the entropy density at higher temperatures (T > 2Tc) is not very

different from that of the relativistic ideal gas. (We should note here that this picture

has not been verified experimentally. High elliptic flow at LHC energy [73] cast some

doubt on the idea of approximately weakly interacting quark-gluon plasma even at

T ∼ 2TC). This means is that one needs to connect different pictures together:

hadronic gas at low temperatures T < TC , a weakly interacting ideal gas approach

for T somewhat higher than TC and strongly interacting partonic and hadronic matter

in the in-between region, especially around TC .

There has been a great deal of work ( [74, 75, 76, 77, 78, 79, 80, 81], also covered

in reviews like [82, 83]) on calculations of the viscosity of QGP on both sides of the

critical temperature including the neighborhood of TC . The most recent and detailed

calculations on viscosity in the low temperature hadron phase were done in Ref. [84].

On the high temperature side, the most detailed and recent calculations for viscosity

are found in Ref. [78, 79].
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In Ref. [85], Hirano and Gyulassy have surveyed most of the works on calculations

of shear viscosity. They argue that the low η/s of QGP does not arise from the

sudden drop of viscosity at the transition, but rather is due to the sudden increase in

entropy density. In their phenomenological model, they include the strongly coupled

N = 4 supersymmetric Yang-Mills (SYM) gauge theoretical calculations for η and

η/s. The minimum for shear viscosity normalized to entropy density is taken to be

the the conjectured lowest bound, the so called Kovtun-Son-Starinets (KSS) bound,

(η/s)KSS = 1/4π. It should be noted that kinetic theory calculations based on the

uncertainty principle [75] also obtain values close to the KSS bound.

In our model, we use shear viscosity as a function of temperature in the form

provided by Hirano-Gyulassy in Ref. [85]:

η(T ) =





[1 + w ln(T/TC)]2T 3 for T > TC ,

T 2
CT for T ≤ TC .

(4.1)

Here w is a parameter that depends on the running QCD coupling strength. Its

suggested value in Ref. [85] is ∼ 1. Fig. 4.1 shows how η depends on temperature.

We note that the viscosity η increases monotonically at all temperatures below and

above the critical temperature T = TC .

4.2 Entropy

The expression of entropy as a function of temperature is the equation of state

(EOS). Two different equations of state are used in our work. The first EOS, which

we label as EOS I, is the lattice QCD EOS. This is basically the numerical values for

for temperature and the corresponding entropy density obtained from lattice QCC

calculations. We have used the values from Ref. [86], and details on the calculations

are in Ref. [11]. In particular, we have used s95p-v1 from these references. As

explained in this reference, the name s95 means that entropy density values reache
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3

in Eq. (5) is the universal minimal viscosity to entropy
ratio even for QCD. In that case, the viscosity of the
sQGP could be up to a factor of ∼ 1/2π smaller than
of a wQGP. It is then tempting to conclude that the
sQGP must have anomalously small viscosity if perfect
fluid behavior is observed. However, as we show below,
the sQGP viscosity is actually very close to that of ordi-
nary hadronic matter just below Tc.

To develop this argument further, we first digress to
recall that the entropy density in the Nc " 1, g2Nc " 1
limits of N = 4 SYM is given by [27]

sSYM =
[
3
4

+
0.6

(g2Nc)3/2
+ O

(
1

N2
c

)]
4
3
KSYMT 3 . (6)

where the Stefan-Boltzmann constant for N = 4 SYM is
KSYM = π2(N2

c − 1)/2 ≈ 39.5 is about 3 times greater
than KSB of our QCD world [26]. What is especially re-
markable about Eq. (6) is that, at infinitely strong cou-
pling, the entropy density is only reduced by ∼ 25% from
its non-interacting SB value. On the other hand, the vis-
cosity in this extreme limit is reduced about an order
of magnitude from the weak coupling value and limited
only by the quantum (Heisenberg uncertainty) bound on
the effective scattering rate. Current lattice data on the
QCD viscosity near Tc [28] are with large numerical error
bars between these weak and super strong coupling limits
but the relatively small deviation of the lattice entropy
density from the SB limit is consistent with Eq. (6).

The AdS/CFT lower bound (5) together with the as-
sumed universal 3/4 reduction of the SB entropy density
implies that the absolute value of the sQGP viscosity at
Tc would be

ηsQGP(T ) ≈ ηSYM(T ) =
KSBT 3

4π
≈ T 3

c

(
T

Tc

)3

(7)

where we used a fact that for QCD KSB ≈ 12–15 is acci-
dentally close to 4π. The monotonic increase of ηSYM(T )
is illustrated by the dashed curve in Fig.1.

The effective transport cross section via Eq. (1) at Tc ∼
160 MeV is in this case

σc
tr ≈

4
5

Tc

ηc
∼ 12 mb . (8)

Here ηc ≡ T 3
c = 0.106 GeV/fm2 at Tc = 0.16 GeV. See

Ref. [29] for an independent estimate of the transport
cross section in the sQGP phase leading to similar σtr(T )
near Tc.

While there is no consensus yet on what physical mech-
anisms could enforce the minimal viscosity bound in the
sQGP [18, 30, 31], we take as empirical fact that the
sQGP viscosity must be close (within a factor of two)
to the minimal (uncertainty) bound, Eq. (7). Our cen-
tral assumption is that local thermal equilibrium is main-
tained in the sQGP core with minimal dissipative devia-
tions and with the equation of state and hence speed of
sound as predicted by QCD. Alternate scenarios, with ar-
bitrary equations of state with higher speed of sound that

0 0.5 1 1.5 2 2.5 3
T
!!!!!!!!!
Tc

0.1

0.5
1

5
10

50
Η!T"#Tc3

SYM

SYM

wQGP

sQGP

HRG

FIG. 1: Illustration of the approximately monotonic increase
of absolute value of the shear viscosity with temperature.
The kink shown at Tc is expected to be smeared out by the
∆Tc/Tc ∼ 0.1 width of the QCD cross-over transition. The
solid blue curve shows η(T < Tc) = T/σH for a HRG followed
by the more rapid increase of the viscosity in the sQGP phase
with ηsQGP ≈ ηSYM ≡ KSBT 3/4π ≈ T 3. The horizontal line
shows that near Tc, η ≈ ηc ≡ T 3

c . At high T $ Tc asymptotic
freedom leads to an even more rapid growth of viscosity as
the sQGP evolves gradually into the weakly coupled wQGP.
In this figure, w = 1 in Eq. (10) is taken to emphasize the
possibility that the highly viscous but nearly“perfect fluid”
sQGP may become an ordinary “viscous fluid” already for
T >∼ 2Tc.

in principle could compensate the higher dissipation and
viscosity in a wQGP will not be considered here. In this
connection we also emphasize the importance of fixing
sQGP initial conditions with Color Glass Condensate or
saturating gluon distributions constrained by the global
entropy observables [11, 32]. With fixed initial conditions
and equation of state, the remaining degrees of dynam-
ical freedom are reduced to the dissipation corrections
discussed in this section for the sQGP phase and the
dynamical constraints on its dissipative hadronic corona
discussed in the subsequent sections.

Note that the effective transport cross section in the
sQGP σc

tr just above Tc is remarkably close to the
hadron resonance gas transport cross section just below
Tc [19, 20]. However, due to the 1/T 2 scaling at T ∼ 2Tc,
the effective transport cross section in the sQGP would
already drop to ∼ 3 mb while preserving the (uncertainty
principle) lower bound Eq. (5).

In contrast to the novel sQGP phase above Tc, for
T < Tc, matter is well known to be in the confined hadron
resonance gas (HRG) phase where the kinetic theory vis-
cosity [16, 19] is

ηHRG ≈
T

σH
≈ ηc

T

Tc
, (9)

as illustrated by the solid curve below Tc in Fig. 1. Be-
cause the hadronic transport cross sections are typically
σH ∼ 10 − 20 mb, the combination of Eqs. (7) and (9)

Figure 4.1: Shear viscosity as a function of temperature. Figure is taken from
Ref. [85]. It shows η(T ) for strongly coupled QGP, weakly coupled QGP, hadron
resonance gas and values calculated from infinitely coupled N = 4 Super Symmetric
Yang-Mills (SYM) theory.

at 95% of the ideal gas values at T = 800 MeV. There are slightly different values

for entropy density depending on different parametrizations of the trace anomaly

(ε − 3p)/T 4. Fig. 4.2 shows the different parametrizations and s95p-v1 is the solid

line. Note that at both ends, the hadron resonance gas at low temperature limit and

the partonic matter at the high temperature end, the system is close to a relativistic

ideal gas, for which the trace anomaly vanishes (ε = 3p).

The lattice results are listed, as indicated in the figure 4.2, in Ref. [86] covers

a big range of temperatures. As will be discussed in Chapter 8, we use constant

temperature freeze out in our work and we choose the constant temperature to be

150 MeV. The initial temperature in then a function of centrality of the collision. and

is not fixed. Initial temperature is higher for more central collisions and the system

evolves for longer time before freeze out occurs. Therefore, we do not use the whole

range of temperature given in the lattice numbers cited here. We cut the list off at

150 MeV in accordance with the choice of freeze out temperature in our model.

We also use an equation of state that is based on the Bag Model and assumes a
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 100  250  400  550  700
T [MeV]

(ε-3p)/T4
p4, Nτ=6
p4, Nτ=8

asqtad, Nτ=8

FIG. 5: The trace anomaly calculated in lattice QCD with p4 and asqtad actions on Nτ = 6 and
8 lattices compared with the parametrization given by Eqs. (4.2) and (4.3). The solid, dotted
and dashed lines correspond to parametrizations s95p−v1, s95n−v1 and s90f−v1 respectively, as
discussed in the text.
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FIG. 6: The pressure, energy density (left panel) and speed of sound (right panel) in the equations
of state obtained from Eqs. (4.2) and (4.3). The vertical lines indicate the transition region (see
text). In the right panel we also show the speed of sound for the HRG EoS and EoS with first
order phase transition (thin dotted) line, the EoS Q

hadron gas, and its minimum value is that of HRG speed of sound3. It is quite simple to
understand why this happens: To achieve smaller speed of sound than the speed of sound in
hadron gas, the trace anomaly should be larger than in HRG. As one can see in Fig. 4, the
present lattice data clearly disfavors such a scenario. In Figure 6 we indicate the transition
region from hadronic matter to deconfined state by vertical lines. We define the transition

3 Similar EoS was presented already in Refs. [45, 46].

13

Figure 4.2: Parametrization of the trace anomaly calculated from lattice QCD. Figure
is taken from Ref. [11], which has the details on the numbers and parametrization.
In our calculation we have used s95-v1, which is represented by the solid line.

first order phase transition. This is the model discussed in the reference we have cited

above for the expression of entropy density [85]. We label this EOS as EOS II. In this

model, the phase transitions occurs at TC with a jump in the entropy density. The

abrupt rise in entropy density accounts for the low viscous behavior (i.e., low η/s)

and is not because of a sudden drop in viscosity. Viscosity does not drop at TC , as

indicated in Fig 4.1. The entropy jump is given by the ratio sQ/sH , where sQ and sH

are entropy densities of the quark-gluon phase and the hadronic phase, respectively.

In this model the minimum η/s occurs at T = TC and equals the KSS bound. We

add a linear interpolation of the mixed phase at T = TC to the Hirano-Gyulasssy

model. The expression for s(T ) is:

s(T ) =





4πT 1/c2s for T > TC ,

4π
a

[f(a− 1) + 1]T 3
C for T = TC ,

(4π
a

)T 1/c2H for T < TC .

(4.2)
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Here, a = sQ/sH . Clearly, a depends on the number of flavors in the model. Also,

f is the fraction of quark-gluon plasma to hadronic matter in the mixed phase and

varies from 0 for hadronic gas to 1 for QGP. The quantities cs and cH are speeds of

sound in quark-gluon and hadronic phases respectively.

4.3 Entropy producion equations

The temperature dependent viscosity and entropy density discussed in the last sec-

tion provides us a temperature dependent η/s. In order to apply this to the evolution

of the system, we need to express both entropy and temperature of the system(hence,

η/s) as functions of time. Using the Bjorken boost invariant longitudinal expansion,

we apply the techniques mentioned in Section 3.5 and use the hydrodynamic equations

from Chapter 3.

Eqn. (3.16), neglecting bulk viscosity, can be written as

TDs+ Ts∂µu
µ = πµν∇µu

ν (4.3)

Using the methods from Section 3.5 we get

ds

dτ
+
s

τ
=

π

Tτ
. (4.4)

Here π = πηη . Note that we have used the Milne coordinates here, where πµν reduces

to this simple form. In regular coordinates (t, x, y, z), it equals π0
0 − πzz .

For the first order theory, i.e., the Navier-Stokes theory, the expression for πηη is

obtained from (Eqn 3.18) using boost invariance. This gives π ≡ πηη = ∇<ηu
ν
> =

η(2/τ − (2/3) · 1/τ) = 4η/3τ . Thus, for the first order theory, π is given by

π =
4η

3τ
(4.5)



www.manaraa.com

50

Therefore, from Eqn. (4.4), the first order entropy production equation is

ds

dτ
+
s

τ
=

4η

3Tτ 2
. (4.6)

Similarly, using Eqn (3.28), one gets

π = η

(
4

3τ
− πT d

dτ

β2

T
− τπ

η

dπ

dτ
− τπ

2ητ
π

)
(4.7)

Using β2 = τπ/2η, and rearranging terms, this last equation gives

τπ
dπ

dτ
+

(
1 +

τπ
2τ

+
1

2
ηT

d

dτ
(
τπ
ηT

)

)
π =

4η

3τ
(4.8)

Thus Eqn. (4.4) with π given by Eqn. (4.8) is the second order entropy production

equation. Eqn. (4.8) was first obtained in [64] (also, see erratum [87]).

4.4 The ratio η/s

In previous sections, we discussed shear viscosity and entropy density as functions

of temperature. The later comes from two different equations of state (EOS): EOS I

and EOS II. The first is based on lattice QCD calculations while the second is based

on the bag model. In the case of EOS II, we added the mixed phase, as described

in Section 4.2. We parametrized the lattice results for s and T as T (s1/3). Using

the expressions and entropy productions equations we then obtain η/s as a function

of proper time. The results are used to obtain diffusion coefficient ν and relaxation

time τπ as function of proper time. These time coefficients are then used in diffusion

equations, which we discuss in subsequent chapters. Fig. 4.3 shows how η/s varies

with temperature in our model. The dotted red line is for EOS II, and the blue solid

line is for EOS I.
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Figure 4.3: η/s vs temperature from EOS I and EOS II. Entropy density for EOS I
is from lattice QCD calculations and viscosity is from [11]. For EOS II, η/s is from
Ref. [85].
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CHAPTER 5

CORRELATIONS AND FLUCTUATIONS

In the most basic terms, “correlation” is used to indicate how particles at two lo-

cations in space and time influence each other. Correlation functions are constructed

in such a way that if there is no influence at all, the functions are zero on the average.

Correlation measurements of detected particles have played very important roles in

several discoveries at RHIC [13, 14, 15, 16] and LHC [73, 88, 89] and demonstrated

strong flow, jet quenching effect, which indicate that the presence of quark-gluon

medium. The “ridge” obtained from RHIC data is basically a long range correla-

tion [90, 91]. Correlation measurements reveal space-time information on particle

production. There are many likely sources for correlations. They include particle

being produced from the same source, like same fluid cell, or resonance decays (e.g.,

pions coming out of the same ρ), energy momentum conservation, collective effects

like anisotropic flows. Particles produced from the same source is a major factor

for long range correlations. Long range correlations reveal that the particle should

be produced at the early stage, right after the collision. Our study is focused on

the hydrodynamic evolution of correlations. Hydrodynamics, however, is unlikely to

contribute to long range correlations. Events that are highly separated in rapidity

are too far (in rapidity space) to be causally connected to occur later in evolution.

Long range correlations like that shown in Fig. 2.14 are casually disconnected for any

hydrodynamic evolution.

Our study deals with correlations of fluctuations. We discussed transverse flow

fluctuations and resulting transverse momentum fluctuation. We have already dis-

cussed diffusion of transverse momentum fluctuations in previous chapters. Fluctu-

ations of especially conserved quantities are interesting and important as they, for
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example, indicate the phase transition. A simple and common example of fluctuation

is the critical opalescence of water. The generally discussed fluctuations in heavy ion

physics are the fluctuations of multiplicity, charge and of traverse momentum.

In our work, we deal with fluctuations of transverse momentum. It is different

from multiplicity fluctuations in that number of particles is not a conserved quan-

tity but transverse momentum is. The focus of our work is on the correlations of

transverse momentum fluctuations. In this chapter, we start by going over the dif-

fusion of single particle transverse momentum fluctuations in Section 5.1, discuss

the two-particle transverse momentum density fluctuations in Section 5.2. In Sec-

tion 5.3, we develop the second order diffusion equation for two-particle correlation

function including Langevin noise. We then demonstrate that we can get a deter-

ministic diffusion equation for the correlation above the background thermal noise.

The development of second order deterministic equation is our new work. Finally,

we discuss the relaxation time in the last two sections. We have already seen that

the relaxation time arises due to causality constraint - a consequence of second order

hydrodynamics. We will very briefly mention an interesting effect of the second order

time derivative term in the causal diffusion equation.

5.1 Transverse momentum fluctuations

The momentum density current of a single fluid particle is given by

T 0i = γ(ε+ p)ui (5.1)

As mentioned in Chapter 3, we use the Landau frame (or Landau definition of flow

uµ). In this frame π0i = πi0 = 0. We also introduced fluctuation in momentum

current there

δT 0i ≈ (ε+ p)δui (5.2)
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Obviously, fluctuations in flow give rise to fluctuations in momentum current. We

consider only transverse flow and, hence, only transverse momentum fluctuations.

Fig. 3.2 illustrates the transverse flow fluctuations. We have already seen that trans-

verse momentum fluctuations diffuse in fluid and that diffusion brings the system

back to the local equilibrium. Fluctuations do not last long and ultimately become

thermal background fluctuations - the fluctuations that exist even in equilibrium. Re-

alistically, there is always background noise. The quantity δT 0i is the fluctuation on

the top of the background average. The diffusion of δT 0i involves momentum transfer,

which is related to shear viscosity. In fact, shear viscosity determines the strength of

diffusion, as we have already seen in Chapter 3. Let us rewrite the first order version

of Eqn. 3.34 (this follows from (3.25) in the same way)

∂δT0y

∂t
= ν∇2δT0y, (5.3)

and Eqn. (3.34)

τπ
∂2δT0y

∂t2
+
∂δT0y

∂t
= ν∇2δT0y. (5.4)

Eqn. (5.3) clearly expresses that the momentum density fluctuations diffuse over the

time - following a regular or first order diffusion equation. Eqn. (5.4) includes the

second order corrections. Note that the diffusions coefficient contains shear viscosity:

ν = η/Ts. As we have already mentioned, we consider only shear viscosity.

5.2 Two-particle transverse momentum correlation function

Transverse momentum fluctuations can be used to construct a two-particle corre-

lation function. This can then be used to obtain the expression for a relation on how

such fluctuations diffuse over time. Let us label a pair of particles or fluid cells by 1

and 2. Note that we are dealing with transverse momentum and therefore pick up a

transverse component for i, let us say i = y. A two-particle correlation function for
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transverse momentum can then be defined as

r = 〈T 0y
1 T 0y

2 〉 − 〈T 0y
1 〉〈T 0y

2 〉 (5.5)

This is equal time correlations and the labels 1 and 2 actually represent the two

locations of the fluid particles being correlated, i.e., T 0y
1 ≡ T 0y(x1) and T 0y

2 ≡ T 0y(x2).

The angular brackets represent average over ensembles of events. Now we consider a

small perturbation on T 0y
1 :

δT 0y
1 = T 0y

1 − 〈T 0y
1 〉 (5.6)

Obviously, we see that 〈δT 0y
1 〉 = 0. However, average of δT 0y

1 δT 0y
2 does not vanish, as

it would be expected in the case of a deterministic quantity.

We treat perturbations as stochastic term and employ the stochastic methods

([92, 93]) from here on. From (5.5) we get

r = 〈δT 0y
1 T̄ 0y

2 〉+ 〈T̄ 0y
1 δT 0y

2 〉+ 〈δT 0y
1 δT 0y

2 〉. (5.7)

The bar over T 0y
1 also represent the average over an ensemble of events and is used

for notational simplicity. Following standard stochastic methods, we keen the last

term although it appears as a second order in fluctuations. This term becomes a

contributing factor because of the stochastic nature of perturbations (which also gives

〈δT 0y
1 〉 = 〈δT 0y

2 〉 = 0). In absence of noise it vanishes as δt2. In the presence of noise,

however, this term evolves only as
√
δt and does not vanish as δt2, as one might

expect [92].

5.3 Diffusion of the correlation function

We proceed to obtain a diffusion equation for a two-particle correlation function,

similar to Eqn (5.4). For that we differentiate (5.7) and evaluate
(
τπ

∂2

∂t2
+ ∂

∂t

)
r.
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Differentiating and arranging the terms gives

(
τπ
∂2

∂t2
+
∂

∂t

)
r = 〈

(
τπ
∂2

∂t2
+
∂

∂t

)
δT 0y

1 T̄ 0y
2 〉

+ 〈T̄ 0y
1

(
τπ
∂2

∂t2
+
∂

∂t

)
δT 0y

2 〉

+

(
τπ
∂2

∂t2
+
∂

∂t

)
〈δT 0y

1 δT 0y
2 〉 (5.8)

The last term represents noise and is non-zero only when x1 = x2. We will call this

term Γ and note that Γ ∝ δ(x1 − x2). Now, plugging this result into (5.7) gives

(
τπ
∂2

∂t2
+
∂

∂t

)
r = ν∇2

1〈T 0y
1 δT̄ 0y

2 〉+ ν∇2
2〈δT 0y

1 T̄ 0y
2 〉+ Γ

= ν
(
∇2

1 +∇2
2

)
〈T 0y

1 δT̄ 0y
2 〉

+ ν
(
∇2

1 +∇2
2

)
〈δT 0y

1 T̄ 0y
2 〉+ Γ

= ν
(
∇2

1 +∇2
2

)
r + Γ′, (5.9)

where Γ′ = Γ− ν (∇2
1 +∇2

2) 〈δT 0y
1 δT 0y

2 〉. In equilibrium (r = reql), the left-hand side

vanishes. This means Γ′ must satisfy

Γ′ = −ν
(
∇2

1 +∇2
2

)
reql (5.10)

Again, since the left side of (5.9) vanishes for reql, we finally obtain the second order

diffusion equation for ∆r ≡ r − reql:

τπ
∂2∆r

∂t2
+
∂∆r

∂t
= ν(∇2

1 +∇2
2)∆r (5.11)

In the same way we can obtain the first order diffusion equation for ∆r

∂∆r

∂t
= ν(∇2

1 +∇2
2)∆r (5.12)
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The last equation, was first obtained and discussed in detail in [71]. The second order

equation, Eqn. 5.11, is our new result. Note that a similar equation for correlation of

multiplicity fluctuations was obtained in Ref. [65]. However, transverse momentum

fluctuation is very different from multiplicity fluctuation. As is already pointed out

earlier, transverse momentum is a conserved quantity while the number of particles

is not. The underlying reasoning behind the derivation of these two causal diffusion

equations is different.

We see that the two-particle transverse momentum correlation above the back-

ground thermal noise diffuses in the medium over time. The strength of diffusion,

i.e., the diffusion coefficient is determined by the viscosity to entropy ratio η/s and

the temperature. The ratio itself, in general, is a function of temperature. Viscosity,

entropy density and their temperature dependence were discussed in Chapter 4. In

short, the diffusion coefficient encapsulates all the information on the specific viscosity

η/s of the medium.

To exploit the general techniques and simplicity offered by Bjorken boost invari-

ant expansion, we want to write Eqn. (5.11) in boost invariant form. We do not use

transverse expansion, as can be noted by the fact that we are already developing

the equations in the forms suitable for longitudinal expansion. In Chapter 9, we will

show that, as far as our integral observables (discussed in Chapter 6) are concerned,

the transverse expansion integrates out and we do not loose generality by considering

longitudinal expansion only. It should be noted that our current work is about the

correlations in rapidity only, not the correlations in the azimuthal angle. Our current

theory is therefore about a (1+1) dimensional (one space and one time dimension)

boost invariant evolution of two-particle pt correlations. To paraphrase again, our

theory deals with longitudinal boost invariant evolution of ∆r. It should be noted

that, since its two-particle correlations, it is not just a (1+1) dimensional equation

as far as numerical calculations are concerned. Even though we are using boost in-
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variance, the diffusion equations are not independent of rapidity η. Computationally

we still have three coordinates: η1, η2 and τ , with (1+1)D boost invariant hydrody-

namics. This fact highlights the challenge of the full (3+1)D hydrodynamic model

for two-particle pt correlations.

In order to write Eqn. (5.11) in Bjorken boost invariant form we need to go over

the linearization again but with the simplification of boost invariance and use the

Milne coordinate. We recall from Section 3.5 that in the Milne coordinate system,

xµ = (τ, x, y, η), and the four-flow is given by uµ = (1, 0, 0, 0). We find that D =

uτ∂τ + 0 = ∂τ and ∇µ
z∇zµ = (1/τ 2)∂2/∂η2. Thus instead of getting Eqn. (3.34), one

gets

τπ
∂2δT0y

∂τ 2
+
∂δT0y

∂τ
= ν∇2

ηδT0y (5.13)

For two-particle correlations, as before, this finally leads to

τπ
∂2∆r

∂τ 2
+
∂∆r

∂τ
=

ν

τ 2
(∇2

η1 +∇2
η2)∆r (5.14)

Eqn. 5.14 is the most important equation in our model. The diffusion coefficient

ν and the relaxation time τπ are temperature dependent and, hence, Eqn. 5.14 has

a complicated dependence on time. Numerical solutions are the only options. We

have discussed in detail the viscosity to entropy ratio in Chapters 3 and 4, and we

know this ratio constitutes the diffusion coefficient ν and the relaxation time τπ. The

first order version can be obtained from the first order diffusion of δui discussed in

Chapter 4, using the same method:

∂∆r

∂τ
=

ν

τ 2
(∇2

η1 +∇2
η2)∆r (5.15)

Eqn. (5.15) was first derived in Ref.[71].
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5.4 Relaxation time

The relaxation time is another transport coefficient. In our context here, it is the

time in which the second order effects relaxes taking us back to the first order effects.

Relaxation times are calculated from kinetic theory. Kinetic theory calculations for

Boltzmann gas indicates that τπ = 3η/2p [59]. For relativistic massless Boltzmann

gas ε = 3p and this gives τπ = 6η/Ts. For massive Boltzmann gas it modifies to [59]

τπ =
η

Ts

(
3 +

T

s

ds

dT

)
(5.16)

For s ∝ T 3, this again gives τπ = 6η/Ts. Let us write β for the ratio of τπ to η/Ts,

τπ = β
η

Ts
. (5.17)

Thus we see from the two simple examples here that β = 6 for kinetic theory. More

extensive calculations can be found in Ref. [94], where τπ depends on the coupling

strength. The suggested value of β in this reference is between 5 to 6. Ref. [95] use a

value as large as 6.32. Smaller values of β have also been used in some hydrodynamic

models (see, for example [96, 97]). In this work, we use the kinetic theory value.

We will show in Chapter 8, that this value of β, enables a better match with the

experimental data.

We note that the relaxation coefficient for shear viscosity, τπ (Eqn.(5.17)), is pro-

portional to the diffusion coefficient ν (Eqn.(3.35)), with β as the constant of propor-

tionality,

τπ = βν. (5.18)
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5.5 Diffusion and wave propagation

The value of β ∼ 6 is a generic result of kinetic theory. Higher values of the

relaxation coefficient as compared to the diffusion coefficient have interesting conse-

quences. We will discuss them in Chapter 6. Here we note that the second order

diffusion equation (5.11) is not just a diffusion equation. It has a propagating wave

part as well. In absence of the second order time derivative, the equation is a regular

(first order) diffusion equation. An initial function ∆r, such as a gaussian, spreads

out like a solution of a diffusion equation. On the other hand, if the first order time

derivative vanishes, the equation is a typical wave equation. It describes the propaga-

tion of wavefronts in both directions. Therefore, the second order diffusion equation

is expected to represent competing diffusion and propagating wave behavior. Higher

values of β put more weight on the wave part, but at the same time reduces the

propagation speed
√
ν/τπ. In rapidity space (i.e., if we use (5.14), diffusion effects

are further suppressed because of the 1/τ 2 factor attached to the diffusion coefficient.

The feature of competing wave and diffusion is, obviously, absent in the first order

theory, which has only diffusion. The consequences of this feature of the second order

theory in our observables will be discussed in detail in Chapter 8.
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CHAPTER 6

CORRELATION OBSERVABLES

In Chapter 5, we developed the equations that describe the hydrodynamic evo-

lution of two-particle pt correlations. We showed that second order Israel-Stewart

hydrodynamics and first order Navier-Stokes hydrodynamics, respectively, lead to

second order diffusion equation and first order regular diffusion equation for ∆r. We

observed that these equations turn out to be deterministic despite the fact that the

local equilibrium value reql is not zero due to stochastic thermal noise. The first order

diffusion of δr was developed in Ref. [71]. The second order equation for ∆r is our

new result and is the main framework for our theory. The second order diffusion

applied to charge fluctuations is first developed in Ref. [65].

In this chapter, we begin by discussing the main observables that connect our

theoretical model with experimental measurements. One observable is the quantity

C, described in detail in the following section. The other important observable is the

width of ∆r. These observables are first developed and discussed in Ref. [71]. We

follow this reference in our discussion here. The concept and method developed in

Ref. [71] have actually stimulated experimental measurements by STAR [43]. These

are the measurements of the observables we just mentioned. The STAR results have

proven to be a valuable resource for testing the calculations based on our model. We

discuss the experimental results in this chapter and compare them with our compu-

tations in Chapter 8.

We discuss the definition of the observables in Section 6.1. The analysis of these

observables by STAR is discussed in Section 6.2. Finally, in Section 6.3, we dis-

cuss computations by the NEXSPHERIO group and the results relevant for our own

computations.
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6.1 Observables

6.1.1 pt covariance, C

We demonstrated in Chapter 5 that the quantity ∆r obeys deterministic diffu-

sion equations. Navier-Stokes theory leads to regular diffusion equation while Israel-

Stewart second order theory leads to the second order diffusion equation for ∆r.

Recall from Section 5.3 that the diffusion equations for the correlation function r

contain the Langevin noise. The equations for ∆r are, nonetheless, deterministic

since the background thermal noise cancels out. In Ref. [71], Gavin and Abdel-Aziz

have demonstrated how the quantity ∆r may be used to obtain the observables and

thus established a connection with the experimental measurements. One of the ob-

servables they proposed is the transverse momentum covariance, or pt covariance, C,

given by

C = 〈N〉−2〈
∑

i 6=j

ptiptj〉 − 〈pt〉2 (6.1)

Here 〈pt〉 is the average transverse momentum:
∑ 〈pti〉/〈N〉. The brackets represent

the event average. The index i labels particles in each event. At local equilibrium

momenta are uncorrelated, the number fluctuations satisfy Poisson statistics and C

should vanish.

It should be noted that C is slightly different form the pt covariance or correlation

function measured by many experiments. For example, STAR previously measured

the differential pt correlation [98, 99]

〈δpt1δpt2〉 =
〈∑i 6=j δptiδptj〉
〈N(N − 1)〉 =

∫
dp1dp2

∆ρ(p1,p2)

〈N(N − 1)〉δpt1δpt2 (6.2)

Here, δpti = pti − 〈pt〉 and ∆ρ(p1,p2) is the correlation function

∆ρ(p1,p2) = ρ2(p1,p2)− ρ1(p1)ρ1(p2) (6.3)
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with ρ2(p1,p2) = dN/dy1d
2pt1dy2d

2pt2 and ρ1 = dN/dyd2pt respectively being the

densities of pairs and single particles. The correlation measured by C is different

from that given by Eqn. (6.2) and other pt correlations used in RHIC experimental

analyses in that C is more sensitive not only to number density fluctuations but also

to pt fluctuations because of its explicit dependence on particle momenta [43, 100].

The relation of the observable C to ∆r, as established in Ref. [71], is given by

C = 〈N〉−2

∫
∆r(x1,x2)d3x1d

3x2 (6.4)

Thus, C is obtained by integrating ∆r over space and normalizing with 〈N〉2. Recall

that r is the correlation of two-particle momentum current T0i. It can be written as

an integral of a phase space distribution function over the momenta

T0i =

∫
d3p

(2π)3
f(x1,x2)pt (6.5)

We numerically solve the diffusion equations for ∆r taking into account the tem-

perature and time dependence of the transport and relaxation coefficients, as well as

different equations of state. The solutions obtained are ∆r, which are then integrated

to compute the observable C.

6.1.2 Correlation width σ

The correlation width is another important observable that can be measured from

experiments. From the solutions ∆r, we first calculate the variance. We use this

standard relation:

V = 〈η2〉 − 〈η〉2 =

∫
(∆r)2dη1dη2∫

dη1dη2

−
(∫

∆rdη1dη2∫
dη1dη2

)2

(6.6)

The width is then taken as σ =
√
V .
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The STAR group has measured correlation widths at different centralities [43]. In

Section 6.2, we discuss their results. We present our computed results and compare

with the experimentally measured values in Chapter 8.

In Ref. [71], the width is an observable used to estimate the value of the specific

viscosity, η/s, of quark-gluon plasma. In this reference, Gavin and Abdel-Azis de-

velop the first order deterministic diffusion equation of ∆r and use Bjorken invariant

expansion to obtain the width of two-particle pt correlations. They demonstrated that

the viscosity of the medium broadens the correlation width, and this very broadening

can be used to estimate η/s. Their calculations show that the width increases with

time τ starting from some initial value τ0 according to

∆V ≡ σ2 − σ2
0 = 4ν

(
1

τ0

− 1

τ

)
(6.7)

If we consider the whole course of hydrodynamic evolution, the final time τ in Eqn. 6.7

can be naively identified with the freeze out time τF . Experimentally, the width at

τF can be identified with the width of C for the most peripheral collisions and that at

τ0 with width for the most central collision, as suggested in the this reference. Thus

from the measurable width one can estimate η/s. It is clear that the final width

depends on the η/s and the life time of the quark-gluon plasma. This method for

extracting η/s is clearly different from the traditional methods that use the flow data

(see for example, [101] and [102] for latest estimates). The uncertainties like initial

conditions, freeze-out and event-by-event fluctuations demand more than just one

method. This alternate method, in fact, motivated the STAR measurement of Ref.

[43]. This experimental measurements provided a range for the values for η/s, that

are obtained from the flow data. In addition, they have provided a wealth of data on

correlation amplitude C and width σ for various centralities. These data have proven

to be very important to our current work.
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Estimation of η/s, however, is not the main point of our work in this dissertation.

Our work here has a broader goal. We study hydrodynamic response and behavior

of the system and its effects on correlations, with the focus on the pt correlations in

rapidity.

6.1.3 The offsets

We recall that the diffusion equations of ∆r are linear homogenous equations.

This means that if ∆r is a solution, then A + B∆r, where A and B are constants,

is also a solution. The constant A can be thought of as a pedestal over which the

distribution ∆r stands on. It is called the “offset”. We attempt to identify this offset

as a part of the long range correlation in ∆η, known as the “ridge”. Ridges are

discussed in detail in Chapter 2.

As already discussed in Chapter 2, the ridge measured by STAR [38, 103], extends

to about 3 relative rapidity units (about -1.5 to 1.5) and that measured by PHOBOS

[44] extends from -4 to +2 in ∆η, (see Fig.6.1). As we have pointed out earlier, it

is very unlikely that hydrodynamics plays a role in the long range correlation. This

is because correlations in the large rapidities are causally disconnected. The long

range correlation of the ridge must have its origin in the initial conditions, or before

thermalization. However, a part of the ridge is present as baseline of the short range

correlation around ∆η ∼ 0. In other words, a part of the ridge which is present at large

rapidities serves as the pedestal of the short range correlations where hydrodynamics

contribute.

We have mentioned in Chapter 2 that there have been attempts to explain the

ridge. One explanation, for the ridge in ∆η, is based on flux tubes and glasma

[40]. According to this interpretation, the long range correlations in ∆η, result from

particles produced in the same flux tube. They emanate from the same transverse

position irrespective of their relative rapidity. Their transverse momenta are then
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Figure 6.1: Long and short range correlations in PHOBOS measurements for Au+Au
at
√
s = 200 GeV. Taken from S. Gavin’s presentation at Initial State Fluctuations

and Final State Correlations in Heavy Ion Collisions (2012), Trento, Italy. This figure
itself is adapted from the PHOBOS paper of Ref. [44].

correlated even for long rapidity ranges and, hence, a ridge in ∆η. It is therefore

natural to assume that the same mechanism must also play a role in short range

correlations and the corresponding part of the ridge. On top of this part of the ridge

lies the modification from the various factors like jets, resonance decays, freeze out,

and most importantly from hydrodynamic evolution. The correlations in our study

is are short range correlations and our focus is on the role of viscous hydrodynamic

evolution.

We will see in Chapter 8 that our hydrodynamic calculations reproduce the cor-

relations in the window of ∆η ∼ 2, and we identify the constant A as the part of the

ridge in this window. The STAR analysis of Ref. [43] also uses a constant baseline or

offset for the correlations. The use of a flat offset is not the only approach though.

The STAR analysis of Cu-Cu collision data of Ref. [104], for example, uses a wide

Gaussian offset.
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6.2 Correlation observables measured by STAR

As pointed out earlier, the suggestion of an alternate method for estimating η/s of

quark-gluon plasma in Ref. [40] motivated an experimental analysis from the STAR

group [43]. In their analysis to measure the rapidity profile of the correlation ob-

servable C, they fit the peak with a double gaussian and a constant baseline. The

baseline or offset can be identified as the part of the ridge in the rapidity window of

the measurements.

The STAR group also reported the rms width of the near side peak of two-particle

correlations. For the most central collision, their measured value is σcentral = 1.0±0.2.

For the peripheral collision the measurement is σpepheral = 1.0 ± 0.2. From the rms

width of the peak, they estimated the ratio of viscosity to entropy density to be of

the order of 0.17± 0.08. This value is well within range of the values obtained from

flow data (see [40] and references therein).

Fig. 6.2 shows the observable C. Notice that the systematic errors are mostly on

the offsets. Also, note a lone data point, off from the general trend of the other data

points, in the case of the most central collision. The reason for the deviation of this

point has been ascribed to track merging [43], and is, therefore, a detector artifact.

Fig. 6.3 shows the experimentally measured width as a function of the number

of participants. We know that the evolution time for more central collisions, which

corresponds to the larger number of participants and multiplicity, is longer. Similarly,

the most peripheral case has almost no evolution time.

In addition to the peaks, Ref. [43], also gives the baseline or offset. We already

know that offsets make yet another observable and will be discussed in Section 6.1.3.

In the experimental measurements [43], the correlation profiles and the base lines are

fit according to

C(b, aw, σw, an, σn) = b+ aw exp(−∆η2/2σ2
w) + an exp(−∆η2/2σ2

n) (6.8)
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FIG. 2: (a) Projection of the correlation function C , for
|��| < 1.0 radians on the �⌘ axis for 70-80% centrality, (b)
30-40% centrality, and (c) 0-5% centrality in Au+Au colli-
sions at

p
sNN = 200 GeV. C is plotted in units of (GeV/c)2.

The solid line shows the fit obtained with Eq. 2. The dotted
line corresponds to the baseline, b, obtained in the fit and
shaded band shows uncertainty in determining b.

longitudinal broadening of the near-side peak while the1

cos(2��) modulation and away-side structures have a2

much reduced amplitude.3

We next focus on the longitudinal broadening of C4

with increasing Npart based on �⌘ projections in the5

range |��| < 1.0 radians. Figures 2(a-c) show the pro-6

jections for 70-80%, 30-40%, and 0-5% centralities, re-7

spectively. The dip seen at �⌘ ⇠ 0 for 0-5% central8

collisions (Fig. 2(c)) is a consequence of track merging9

occurring at �� ⇠ �⌘ ⇠ 0. We observe that the shape10

and particularly the width of the projections evolve with11

collision centrality. We characterize the widths of the dis-12
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FIG. 3: RMS as function of the number of participating nucle-
ons for the correlation function C, for nine centrality classes
in Au+Au collisions at

p
sNN = 200 GeV. The dotted line

represents the absolute lower limit on RMS and shaded band
represents systematic uncertainty on RMS.

tributions by calculating their RMS above a long range13

baseline, b, assumed to be constant in the acceptance of14

our measurement. The baseline, b, is determined using15

the following ansatz to fit the projections:16
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where aw and an stand for the amplitude of wide and18

narrow Gaussians with widths �w and �n, respectively.19

Figure 3 shows the RMS of the correlation function20

as a function of Npart. Vertical lines reflect the statis-21

tical errors. Systematic uncertainties on the RMS are22

dominated by uncertainties in the baseline determina-23

tion and lack of knowledge of the correlations long �⌘24

range behavior, particularly in the most central colli-25

sions. The dotted line displays the minimum RMS ob-26

tained by setting the baseline equal to the correlation27

yield at �⌘ = ±2. The gray shaded band indicates the28

maximum range of RMS values observed when compar-29

ing C for forward and reverse B-field, di↵erent z-bins,30

and various �⌘ ranges used in the determination of the31

o↵set b. The RMS exhibits a modest increase in the32

range Npart < 100 which may, in part, result from long33

range multiplicity fluctuations and from incomplete sys-34

tem thermalization achieved in small collision systems.35

The RMS rises rapidly in the range 100 < Npart < 25036

after which it levels o↵.37

According to [6], the shear viscosity should dominate38

the broadening of the correlation function for su�ciently39

large and nearly thermalized collision systems. However,40

jets and jet quenching could also in principle contribute41

to changes in the shape and broadening of the width of42

the correlation function with varying collision centrali-43

ties. To examine this possibility, we repeated our analysis44

in the 0.2 < pT < 1.0 GeV/c and 0.2 < pT < 20.0 GeV/c45

Figure 6.2: STAR result: Projection of the covariance C for |∆φ| < 1.0 radians on
∆η axis for three centralities shown in the plots. The results are for Au-Au collisions
at
√
s = 200 GeV. This figure is taken from [43].
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√
s = 200 GeV. This

figure is taken from [43].
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Figure 6.4: Transverse and longitudinal profile of initial energy density distribution
in GeV/fm3 generated using NEXUS code, for

√
s = 200 GeV Au+Au collisions with

centrality of top 10%. This figure is taken from [107].

Here b is the baseline or the offset, aw and an are the amplitudes of the wide and

narrow Gaussians used for the fit. The widths of the Gaussians are σw and σn,

respectively. We should note here that a flat offset, given by b in Eqn. 6.8, has been

applied here.

6.3 Observables computed by NEXSPHERIO

NEXSPHERIO is a combination of the computational codes SPHERIO [105] and

NeXUS [106] developed by the Sao Paulo and Rio de Janeiro collaboration. SPHE-

RIO is a relativistic hydrodynamic code that uses Smoothed Particle Hydrodynamics

(SPH) originally developed for astrophysics and later adapted for the hydrodynamics

of heavy ion collisions. NEXUS is a Monte Carlo code that generates smooth and

fluctuating initial conditions using Monte Carlo string fragmentation model called

NEXUS. Figure 6.4, taken from the Ref. [107], shows an example of an initial energy

density profile created by the NEXUS code. Thus NEXSPHERIO codes generates

a fluctuating initial conditions and simulates hydrodynamic evolution starting from

those initial conditions.

NEXSPHERIO model computations have been shown to describe many features

of correlations, including anisotropic flow, and azimuthal correlations, the shape of

the ridge [107, 108, 105].



www.manaraa.com

70

Figure 6.5: NEXSPHERIO computations vs STAR results on RMS widths. The lower
line is results from NEXSPHERIO, which uses equations of inviscid hydrodynamics.
The figure is taken from [100]. NEXSPHERIO computations show narrowing instead
of increasing width shown by STAR data.

In the context of our work, NEXSHERIO results have two important relevant

points. First, in our hydrodynamic theory, we have not included the ideal hydrody-

namics. In their results for the same correlation observables, it is important to check

if any effect that we ascribe to viscous dissipation are present or not. Second, their

computation include the resonances and we can see if there is any effect of resonances,

especially, on the width of the correlation.

Fig. 6.5 shows the correlation widths computed by NEXPHERIO and compares

them with the STAR data discussed in the previous section. Is is clear from this

result that, first, there is no broadening of the width with increasing centrality. Inter-

estingly, the width slightly narrows instead. Second, the resonances, appears to have

no broadening effect. The later observation is important to us since it removes some

doubt on whether is any effect of resonance decays in our own correlation widths.
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CHAPTER 7

INITIAL CONDITIONS AND PARAMETERS

In this chapter we state and discuss the assumptions and parameters used in the

theory, especially in the context of numerical computations. However, before we get

there, we start with summarizing the main equations we use in our computations. In

Section 7.1, we give the summary of these equations. Then in Section 7.2, we discuss

these parameters and assumptions. Finally, we briefly discuss our numerical methods.

7.1 Summary of major equations used in computation

The following is the summary of equations that we use in our numerical compu-

tations. Results of the numerical computations are presented in Chapter 8.

First order diffusion of ∆r in coordinate space:

∂∆r

∂t
= ν(∇2

1 +∇2
2)∆r (5.12)

The same equation in rapidity space:

∂∆r

∂τ
=

ν

τ 2
(∇2

η1 +∇2
η2)∆r (5.15)

The second order diffusion equations for ∆r in the same order:

τπ
∂2∆r

∂t2
+
∂∆r

∂t
= ν(∇2

1 +∇2
2)∆r (5.11)

τπ
∂2∆r

∂τ 2
+
∂∆r

∂τ
=

ν

τ 2
(∇2

η1 +∇2
η2)∆r (5.14)



www.manaraa.com

72

Viscosity as a function of temperature:

η(T ) =





[1 + w(T ) ln(T/TC)]2T 3 for T > TC ,

T 2
CT for T ≤ TC .

(4.1)

Entropy density for EOS I is from lattice QCD calculations [86, 11] and is discussed

in Section 4.2. For EOS II entropy density is:

s =





4πT 1/c2s for T > TC ,

4π
a

[f(a− 1) + 1]T 3
C for T = TC ,

(4π
a

)T 1/c2H for T < TC .

(4.2)

The strength of diffusion, the diffusion coefficient ν, is determined by η/s. The

relaxation time is proportional to ν:

ν =
η

Ts
(3.35)

τπ = β
η

Ts
= βν. (5.17)

Time evolution of entropy density:

ds

dτ
+
s

τ
=

π

Tτ
. (4.4)

For first order theory π is given by

π =
4η

3τ
(4.5)

And, for the second order theory π is the solution of this differential equation:

τπ
dπ

dτ
+

(
1 +

τπ
2τ

+
1

2
ηT

d

dτ
(
τπ
ηT

)

)
π =

4η

3τ
(4.8)



www.manaraa.com

73

Experimental observable, transverse momentum covariance:

C = 〈N〉−2〈
∑

i 6=j

ptiptj〉 − 〈pt〉2 (6.1)

The connection between experimental and theoretical observables, C and ∆r:

C = 〈N〉−2

∫
∆r(x1,x2)d3x1dx

3
2 (6.6)

7.2 Initial conditions and parameters

In order to obtain the correlation observables, first we need to solve the first and

second order diffusion equations for ∆r. Recall that the diffusion coefficient ν contains

the viscous dissipation information. It has an intricate temperature and hence time

dependence, as discussed in Chapter 4. This makes it impossible to analytically solve

even the first order diffusion equation. The second order gets even more complicated.

We must use a numerical method to solve these equations. Temperature dependence

of η/s is discussed in detail in Chapter 4. Entropy density as a function of time is

a solution of Eqn.(4.4) where the quantity π, in the case of second order theory, is

a solution of Eqn.(4.8). For the simple first order Navier-Stoke case π is given by

Eqn.(4.5).

Rapidity dependence of correlation functions are expressed in rapidity widths. We,

therefore, solve equations in relative rapidity coordinates rather that the individual

rapidity coordinates of the two particles being correlated. The relative and average

rapidities of two particles at η1 and η2 are

∆η = η1 − η2 ηa =
1

2
(η1 + η2). (7.1)

Note again hat our notation for spacetime rapidity and coefficient of viscosity are the
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same. As mentioned before, there should not be any confusion because of the context

of their use.

We take the initial correlation function (over the thermal background noise), ∆r,

as a gaussian given by

∆r(∆η, ηa, τ0) ∝ exp(−∆η2/2σ2
0 − η2

a/2Σ2
0), (7.2)

where σ0 and Σ0 are initial widths of ∆r in ∆η and ηa, respectively. This is the

same initial condition that is used in Ref. [71]. The scale of Σ0 is of the order of the

system size and we take σ0 � Σ0. Specifically, in our numerical solution we have

used σ0 = 0.54 to make it consistent with the experimental data (the STAR data we

discussed in Section 6.2) for the most peripheral collisions. We have assumed that the

time rate of change of correlation at the beginning is zero: ∂∆r/∂τ |τ0 = 0. In solving

the entropy production equations we naturally take the initial entropy density to be

the entropy density corresponding to the initial temperature, for both equations of

states. The initial value of ∂π/∂τ in Eqn (5.14) is taken to be the corresponding

value for the Navier-Stokes case: π(τ0) = 4η/3τ .

As we have already noted here and discussed in detail in Section 5.4, the relaxation

time τπ is proportional to the diffusion coefficient ν. The proportionality constant β

in Eqn. (5.17) is taken as β = 6, in accordance with kinetic theory calculations, as

mentioned in Section 5.4. In that section, we have also pointed out that there are

some hydrodynamic models which use values much smaller than the kinetic theory

values. We, however, proceed exclusively with the kinetic theory values.

The initial or thermalization time (proper time, to be precise), which we denote

by τ0, is taken to be τ0 = 1 fm. Starting from this time, the system undergoes hy-

drodynamic expansion before the quark-gluon plasma freezes out into a stream of

hadrons. Note that our theory does not include the so called ’after burner’. The
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hadrons, mostly pions, ultimately end up in the detector. Hydrodynamics breaks at

the freezeout. In our model we assume that freeze out occurs at a constant tempera-

ture, TF . We basically make the hydrodynamic evolution stop at TF , where TF = 150

MeV in our model.

We run the numerical codes to solve the equations at different impact parameters

b. The impact parameters range from b = 0 to b = bmax, which is divided in a

number of intervals or bins, typically 100. We take bmax = 12.8 fm, the maximum

impact parameter listed by STAR (in Ref. [109]) for
√
s = 200GeV Au-Au collisions.

The STAR reference uses Monte-Carlo Glauber calculations to connect the impact

parameters to the number of participants. In our work, we have used the optical

Glauber model for this purpose.

How long a system evolves hydrodynamically depends on the freezeout time τF ,

which is different for different centralities. The matter created in the most central

collision has longer hydrodynamic evolution. We have taken the longest time τFc,

the freeze out time for the most central collisions, to be τFc = 9 fm. The evolution

time reduces quickly as we go from the most central to the peripheral cases. We

have assumed that the freeze out time is proportional to average participant area,

τF − τ0 ∝ (Rmax −Rmin)2. This is one of our assumptions and its validity ultimately

lies with whether or not it accords with experimental data.

7.3 A brief note on computation

A major part of the numerical solver consists of codes for solving the diffusion

equations and the entropy equations - the first and second order. For diffusion equa-

tions as well as the entropy production, both first and second order, we use explicit

forward time centered space method. With our values of diffusions coefficient, space

and time grid sizes used, we obtained stable solution for our obviously short time

period of evolution. The results presented in Chapter 8, especially the profiles of
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Figure 7.1: Widths calculated from two different method. The letter R labels the
solution obtained by solving the partial differential method, and S labels the solution
obtained differently, see text for detail.

correlation show our solutions were stable in the overall short evolution time.

First, let us briefly mention our numerical method and test of its validity. A test

of correctness of our codes involves the calculation of correlation widths by two very

different methods. The first method is to integrate the solutions ∆r that we obtain

from our diffusion equation and calculate moments and hence widths. The second

method is to integrate the equations themselves, make the “surface terms” vanish by

taking the surface to ‘infinity’. The second method is used to derive the evolution

equation for variance in Ref. [65]. It should be noted that the later method is useful

for finding width only. Fig. 7.1, shows the evolution of width calculated from the

second order diffusion equation using these two very different methods. We observe

that the solutions perfectly overlap. This is one of the strong bases for the confidence

in our numerical method.

In the case of EOS II, the viscosity and entropy density are both known functions of

temperature, expressed by Eqns. 4.2 and 4.1. Using the entropy production equation,

Eqn. 4.4 (with π given by Eqns. 4.5 and 4.8 for the first order and second order

entropy equations, respectively), the ratio η/s can be evaluated as a function of proper
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time. Then equation 3.35 is used for evaluating the diffusion coefficient as a function

of time. To solve the second order equation, one also needs the relaxation time τπ,

which is a function of time as well, via Eqn. 5.17. Gathering all this information, the

diffusion equations are solved for one value of impact parameter or centrality. The

solutions are ∆r, which are then integrated to compute the moments. The second

moment is the variance which gives the width. This is iterated over the number of

intervals we have divided the the impact parameters into. The impact parameters

vary between 0 and bmax = 12.8fm.
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CHAPTER 8

COMPUTATIONAL RESULTS AND DISCUSSION

In this chapter, we will present, discuss, and explain the results of our numerical

computations. Note that we summarized the main equations, the initial conditions

and the parameters used in our numerical computations in Chapter 7.

First we start with a discussion, in section 8.1, of some of the interesting generic

features forced by causal constraints upon the diffusion equation. These features

constitute an important aspect in the final results. In Section 8.2, we once again

briefly discuss the temperature dependence of the transport coefficients. Then we

discuss the experimentally measured values of our observables. The observables are

discussed in detail in Chapter 7. Since our theory is about viscous hydrodynamics and

viscosity gives rise to diffusion of correlation, ideal hydrodynamics is not a part of our

theory. In order to compare with ideal hydrodynamic calculations we use the results

by NEXSPHERIO group. As mentioned briefly in Secction 6.3, NEXSPHERIO code

employs fluctuating initial condition and inviscid hydrodynamics.

8.1 Waves versus diffusion

We observed in Chapter 3, how the need for maintaining causality forces us to

look for second order Israel-Stewart hydrodynamics from the first order Navier-Stokes

theory. In our context of transverse flow and momentum fluctuations, the second or-

der corrections lead to causal or second order diffusion equations. We have seen that

the causality constraint introduces another transport coefficient - the relaxation time.

The second order time derivative, that contains the relaxation time, significantly al-

ters the nature of the diffusion equation. The causal diffusion equation is a hyperbolic

equation - not the usual parabolic diffusion equation. If we look at the extra second
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order time derivative term in Eqn.(5.11), we observe that this equation incorporates

propagating waves as well. If the first order time derivative vanishes, it reduces to

a wave equation with wavefronts propagating away from the center at the character-

istic speed of
√
ν/τπ. On the other hand, in the limit of vanishing relaxation time,

the equation reverts to the the regular diffusion equation, without any propagating

waves. The solution “spreads” out with time, as we know very well from the textbook

example of the heat equation solution.

The second order diffusion equation is not a new concept. In mathematics, it is

a standard equation known as the telegraph equation. The causal theory of hydrody-

namics has been used for modeling the evolution of the matter created in heavy ion

collisions for about a decade (for example, see [64, 65, 70, 97]). Part of our work is

also related to looking at aspects of the wave and diffusion parts of the equation and

examining their consequence to the observables. We discuss the consequences in later

sections. In this section, we want to show the competing wave and diffusion parts

embodied in the causal diffusion equations. We first note that our equation is more

complicated than the telegraph equation since the relaxation time and the diffusion

coefficient in our equation are complicated functions of time, obtained in pieces from

the temperature dependence of the transport coefficients and entropy density.

Figure 8.1 illustrates the wave and diffusion effects. The characteristic wavefronts

propagate away leaving behind more and more empty space. On the other hand, the

diffusion spreads and the initial function, say a gaussian, broadens with time. We,

therefore, expect that the overall effect is a combination of these two different trends.

The spreading of initial correlation by diffusion fills in the space left behind by the

propagating waves.

Fig. 8.2 shows the solutions obtained from the actual numerical computations

using Eqn. 5.11, the equation in coordinate space, and for special case of a constant

ν = η/Ts and, hence, constant τπ. The combination of the diffusion and wave effects
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Figure 8.1: Wave vs diffusion effects of second order diffusion equation. Waves prop-
agates away from the center leaving behind empty space while the diffusion fills the
space by spreading the initial peak over time. Image: Sean Gavin.

can be seen clearly: the wave fronts recede away, while the diffusion part fills the

space in between them.

In the rapidity space version, Eqn. 5.14, which incorporates Bjorken longitudinal

expansion, one can notice the factor 1/τ 2 attached to the diffusion coefficient. This

means that the effective diffusion coefficient gets smaller and smaller with time. The

diffusion part, therefore, does not appear to fill up the space in between as it does in

the case of coordinate space. Also, the effective wave speed
√
ν/τπ gets smaller with

proper time. And, finally, there is an effect associated with the Bjorken expansion

velocity v = z/t. The overall effect is that the propagation saturates and the diffusion

does not fill up the gap as much as in the case of coordinate space solutions as, seen

Fig. 8.3.

The telegraph equation (i.e, the causal diffusion equation constant coefficients)

has analytical solution [110]. Fig. 8.4 shows the surface plot of the semi-analytical

solution of the telegraph equation. It is “semi-analytical” because the integral of the

Bessel function of the second kind involved in the analytical solution was performed

numerically. We notice that the solution of generic telegraphic solution incorporates

both wave and diffusion effects.

As already noted, the relaxation time is β times the diffusion coefficient ν. As

discussed in Sections 5.4 and 7.2, we take β = 6. The high value of β demanded by
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Figure 8.2: Wave vs. diffusion effects of the second order diffusion equation in co-
ordinate space. Waves propagate away from the center leaving behind empty space
while diffusion fills the space by spreading the initial peak with time. Width of initial
gaussian is σ0 = 3 and ν and τπ are constant for these plots.
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Figure 8.3: Wave vs. diffusion effects of the second order diffusion equation in rapidity
space. This appears different from Fig. 8.2, though the physics is the same. See the
text for explanation.
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Figure 8.4: Wave vs. diffusion effects in the telegraph equation (a simple, generic
causal diffusion equation with constant coefficients). The solution of telegraph equa-
tion is y in one dimensional space x. The quantities are in arbitrary units. We notice
the wave going outward while the diffusion fills up the space. Initial function is a
narrow Gaussian. The scales are, however, not related to Figs. 8.2. The wave part
in this figure is given less weight than than diffusion, as compared to Fig. 8.3, where
a high value of τπ is demanded by kinetic theory.

kinetic theory puts a significantly bigger weight on the wave part compared to the

diffusion part. As a result, we observe the wave dominating the diffusion part in the

examples of Fig. 8.2 and Fig. 8.3.

8.2 Diffusion and relaxation coefficients and centrality

We have taken the constant temperature freeze out at TF = 150 MeV. The initial

temperature T0 depends on the centrality. The more central the collision, the higher

the initial temperature of the system. The higher the initial temperature, the longer

the evolution time for the system. Thus, the hydrodynamic evolution time for the

system, before the freeze out at 150 MeV, depends on the centrality.

As mentioned in Chapter 7, we have taken the freeze out time for the most central

collision to be 9 fm. The diffusion coefficient, ν = η/Ts, depends on temperature.

This means that the strength of the diffusion depends on the centrality of the colli-
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Figure 8.5: Evolution time τ − τ0 and relaxation time τπ plotted against centralities.
The relaxation time shown here is evaluated at the freeze out temperature. Since
freeze out temperature is taken to be constant, relaxation time shown here is constant.

sions. However, it should be noted that at freeze out the diffusion coefficient is the

same for all centralities since we are at the same freeze out temperature TF . Notice the

relaxation time, τπ = βν, shows the same behavior (i.e., constant for all centralities).

Figure 8.5 shows the evolution time and relaxation time at freeze out vs centrality.

We observe that for peripheral collisions the evolution time becomes shorter than the

relaxation time. Recall that the relaxation time is the time needed for the system to

relax to the first order Navier-Stoke case. We discuss this situation in the section on

width of correlation below.

8.3 Observables and comparison with experimental data

We discussed the observables in Chapter 6. Here we are presenting the observables

computed from our theory. In addition, we compare our results with the STAR exper-

imental data [43]. Note again that the details on the initial conditions, assumptions

and parameters are in Chapter 7.
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Figure 8.6: pt-correlation widths calculated from first and second order diffusion
equations using constant η/s. The lowest value η/s = 1/4π is the KSS bound.
Equation of state used is the the equation of state based on lattice QCD calculations
(EOS I).

8.3.1 Correlation width

Correlation width σ is one of our most important observables. In Section 6.1.2,

we discussed this observable in detail along with the STAR measurements of this

quantity. Here we present our theoretical results, computed directly by solving the

diffusion equations, both first and second order. We also compare our results with

the experimental data.

Before we present our general results on how width varies with centralities, we

would like to show how the width varies with centrality for a special case of constant

η/s. Note that constant η/s does not make the diffusion coefficient a constant since

temperature is also a factor there: ν = η/Ts. Figure 8.6 shows the results for η/s

equal to 1, 2 and 3 times the KSS bound η/s = 1/4π. The results are from both the

first and second order diffusion equations. The equation of state is EOS I, i.e., the

one that uses lattice QCD calculations. The two equations of state we have used are

explained in Chapter 4. The second order entropy equation is used for second order

diffusion, while the first order entropy equation is used for first order diffusion.
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We already know from the work of Gavin and Abdel Aziz [71], that the viscous

medium responds to the initial-pt correlation by broadening its width with increased

evolution time and, hence, with increased centrality. Different values of η/s should

lead to different amount of broadening. Such broadening of width, using the results

of the first order diffusion equation, is already discussed in the Ref. [71]. Note,

however that this reference uses constant diffusion coefficient η/Ts, not constant η/s.

The effect of different constant η/s to the width from our computations is shown in

Fig. 8.6. The values of η/s chosen are the KSS bound (η/s = 1/4π) and its next

two multiples, as indicated. These widths are calculated using both the first and the

second order diffusion equations and the lattice QCD based equation of state (EOS

I). This result shows that response of the system is well sensitive to values of η/s, and

also that the first and the second order diffusion gives significant differences except

for the cases of the most central collisions.

We now move on to the general case of temperature dependent η/s. The results

are shown in Fig. 8.7. It also includes the width measured by STAR [43] and that

computed by NEXSPEHERIO using ideal hydrodynamics with fluctuating initial

conditions. STAR results are discussed in detail in Section 6.2. NEXSPEHERIO

computation is discussed in Section 6.3. Widths are computed using both equations

of state, EOS I and EOS II. As explained in Chapter 4, EOS II is the conventional

equation of state based on the Bag Model.

In Fig. 8.7, we first notice that using two different equations of state does not make

much difference. This is interesting since using a more realistic equation of state based

on lattice QCD calculations is not expected to give the same result as that obtained

using the traditional EOS based on the Bag Model. There is some difference, but it

is not significant (∼ 2% maximum in the case of second order diffusion) compared to

the overall width.

The most noticeable feature to observe in Fig. 8.7 is the difference between the
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Figure 8.7: Widths from computations using the first order and second order diffusion
equation using both EOS’s. The data are STAR measurements for Ref. [43]. Also
shown are widths computed by NEXSPHERIO using ideal hydrodynamics [100].

first and second order computation results. It is significant, except in the case of

the central collisions. The difference gets bigger for collisions less central than about

25% (note that 0% is the most central). This is a little surprising since second order

hydrodynamics, in principle, is the next order correction in perturbations to first

order hydrodynamics, as we have highlighted in Chapter 4. We notice that both first

and second order computational results agree well with the experimental data for

∼ 25% and more central collisions. As collisions get more peripheral, the first order

results begin to deviate from the second order results and the experimental data.

The most sensitive parameters that affects the results are the initial time τ0 and

the factor β. In the case of the former parameter the values from 0.6 to 1 are often

used. There is no satisfactory reason yet to decide on a particular value yet. In this

context we just want to use the mostly used value, τ0 = 1 fm. We also use this value

because it better fits the data. Therefore, in the case of initial time, we are using

’the end justifies the means’ methods. Unless there is any compelling reason, we also

employ this approach. In the case of the other important parameter we have the
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kinetic theory computation as a compelling reason. Quantum kinetic theory puts the

values around β ∼ 6. We have chosen β = 6.

In order to see the effects of other choiceS of these parameters, we show the results

obtained using different values of β and the initial time τ0. We have observed that

they are the parameters that affect the final results significantly. Our choice for the

factor β is 6, in accordance with kinetic theory, as we pointed out earlier. First let

we would like to mention that if we choose β = 6.5 − 7, the resulting width match

even better than with β = 6. The result is not shown here and we are not interested

in taking a bigger value of this factor just to get a better match with experimental

data. As we have noted that bigger this factor is the smaller will be the diffusion

compared to the wave effect. We do not want to undermine diffusion. We therefore

stick with the value consistent with the kinetic theory. However, in order to show the

effect of this factor in our results we first present the results obtained using smaller

β. Figs. 8.8 and 8.9 show the results with β = 2 and 4 , respectively.

Fig. ?? shows the results with τ0 = 0.8 and 1.2 fm. In these results, we used only

the lattice EOS, i.e., the EOS I. We see that a smaller value of β gives a less weight

to the wave part. Consequently, results of second order computation more and more

like the results of the first order theory. We clearly notice this trends if we compare

Figs. 8.7, 8.8 and 8.8. The later two use only EOS I.

As for the value of β, we get slightly better fit with β = 7 (the result is not shown

here). However, this will not be consistent with kinetic theory calculation and we use

β = 6.

The computational results from the second order equations agrees very well with

the experimental data at all centralities. This leads us to conclude that the first order

diffusion equation and, thus, the first order relativistic hydrodynamic theory is not

suitable for accurately describing the evolution of, at least, the correlation function.

We need to use second order hydrodynamics for a more accurate description.
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Figure 8.8: Widths from computations using smaller β, β = 2. The data are STAR
measurements for Ref. [43]. Smaller β shifts the second order toward the first order.
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Figure 8.9: Same as Fig.8.8 except that β = 4 here. The data are STAR measurements
for Ref. [43].
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Figure 8.10: This result is obtained using different initial time: τ0 = 0.8 fm. The
data are STAR measurements for Ref. [43].

We may try to understand the difference between the first and second order results

by comparing the evolution time with the relaxation time. Going back to Fig. 8.5, we

see that the system’s evolution time is greater than its relaxation time if the number

of participants is greater than ∼ 200. For
√
s = 200 GeV Au-Au collisions, this cor-

responds to a centrality of about 30%. Therefore, in reality the system may not have

enough time to evolve before relaxation. This leads us to question our assumptions

of thermodynamic equilibrium for mid-central to peripheral collisions. We, however,

believe that results from full 3+1 dimensional hydrodynamics are necessary to make

any strong claim about deviation from equilibrium. It should be noted that 3+1

dimensional codes for two-particle correlations, are like 6+1 dimensional in terms of

computation. Longitudinal Bjorken boost invariance does reduce the dimensionality

since, as we have seen, diffusion depends on η. This is a real computational chal-

lenge. One should note that a full 3+1dimensional hydrodynamic calculations are

comparatively very recent developments in the field [111, 112].

We have found, to a good approximation, that the transverse expansion does not

contribute to our integral correlation observables, like C. The longitudinal expansion

in our model, therefore carries the significance of a more general three dimensional
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expansions, albeit in approximation. We will discuss this important point in Chap-

ter 9.

Again, the we see an excellent agreement of the widths computed using second

order theory. This is not so with the results we get from the first order theory. This

leads us to conclude that the second order theory is much well equipped to describe

the hydrodynamic evolution of of pt correlations in comparison to the first oder theory.

Fig. 8.7 also shows the results of the NEXSPHERIO computation of the width.

We observe that the results do not agree with the data. In fact, we see the widths

decreasing rather than increasing with increasing centrality. Here, we need to note,

as was pointed out in Chapter 6, that NEXSPHERIO uses ideal hydrodynamics,

not viscous hydrodynamics. Also, NEXSPHERIO uses fluctuating initial conditions.

We ascribe these features (especially the use of ideal hydrodynamics) for the differ-

ent results from NEXSPHERIO computations. Comparison with the NEXSPHERIO

results leads us to conclude that ideal hydrodynamics does not provide accurate de-

scription of the evolution of the correlation function.

One other reason we wanted to refer to NEXSPHERIO computation is to show

that the resonance decays does not appear to be contributing to the width. We expect

the same in the results of our model.

8.3.2 pt covariance, C

Another observable we have computed is the amplitude of two-particle pt covari-

ance, C. As mentioned in Chapter 6, STAR group has also measured this quantity as

well [43]. Figure 8.11 shows our results for eight different centralities. We have not

included the plot for the 50 - 60% case as the behavior is similar to its neighboring

centrality bin. This figure also shows the published STAR data from Ref. [43]. We

note an excellent agreement between the computed and experimental data. Here,

the computed numbers are from the calculations using the second order, or causal,
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Figure 8.11: pt correlation amplitude C for various centrality bins. The experimental
data are from [43]. As discussed in Chapter 6, the noticeable errors on experimental
data are at the offsets only (not shown here).

diffusion equation. We would like to point out that the errors in the experimental

data are mainly on the offsets, as is mentioned in Chapter 6. The errors for the peaks

are too small (of the order of 10−5) to be noticeable in the plots and have not been

included in preparing Fig. 8.11.

In Fig. 8.11, we notice an interesting feature in the plots of the central and near

central collision cases. This feature is the double hump structure in the peak of the

correlation. This double hump occurs in the central collision cases and the plots

indicate that it modifies the very short range correlations. In the peripheral case

there is no double hump at all.

In order to understand the double hump we first want to see if there are any

other centralities in the experimental data showing this feature. Fig. 8.12 shows the

comparison that includes data from other centralities [113] as well. We notice that

the comparison is not as close as in Fig. 8.11, but the double humps appear at the
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Figure 8.12: pt correlation amplitude C for various centrality bins. This figure is the
same as Fig. 8.11 except that it includes the experimental data for other centralities
[113].

same centrality bins in both experimental data and the numerical computations.

We now compare the correlation C computed from the first and second order

diffusion equations. Figure 8.13 shows this comparison.

We observe that there is no double hump in the results from the first order dif-

fusion calculations. The comparison of the computations from first order and second

order diffusion equations indicates that the double hump effect on the short range

correlation peaks is the consequence of the competing wave and diffusion part of the

equations. This occurs mostly in central collisions. It should be noted that more par-

ticles gain transverse momenta in central collisions than in peripheral ones. So even

if we consider the soft particles, they collectively have a higher pt than in the case

of peripheral collisions and hence a more relativistic effect. So, we can expect more
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Figure 8.13: Correlation amplitude C from first order and second order diffusion of
∆r. The main difference is in the double hump for mostly the central collisions.

deviations from first order diffusion. However, a stronger second order effect means

the inclusion of propagating wave behavior on top of diffusion. As we have already

pointed out, that kinetic theory requires a high value of relaxation time compared to

the strength of diffusion. This puts a significant weight on the wave behavior. As a

result, we see double humps in the central collisions.

Figure 8.14 shows the evolution of the correlation amplitude C before it gets the

shape of the double hump structure from the previous plots at freeze out. This figure

shows how the initial gaussian evolves and acquires the double hump when the system

nears end of hydrodynamic evolution at the freeze out temperature. This also shows

that it is not all wave propagation - the waves takes over relatively late int the short

evolution time, which is 4.7 fm for 10-20% centrality. The evolution time decreases

very quickly as the collision becomes more peripheral, as can be seen in Fig. 8.5.

When the effective diffusion coefficient (ν/τ 2) becomes smaller. At the beginning it

is clearly diffusion while the wave effect becomes more dominant later. We should note

that this profile is plotted in rapidity space. In rapidity space the wave propagation
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appears to saturate, as discussed earlier in this chapter.

In the case of a smaller β, the wave part is not as dominant (but still present to

make the distribution deviate more from a Gaussian) and we should get mostly the

diffusion effect. This is indeed the case. Fig. 8.15 shows the same evolution but with

different value of beta, β = 2. We need to note that this is unrealistically low value

for β from kinetic theory point of view. Kinetic theory suggests a value ∼ 5-6, as has

been pointed out earlier. Moreover, correlation widths obtained using this low value

of beta differ significantly from the experimentally measured values, as demonstrated

in Section 8.3.1. The choice of β consistent with the values given by kinetic theory

makes both observables, the width and the correlation amplitude, better match with

the experimental data. These observations demonstrate that the second order theory

with reasonable diffusion and relaxation coefficients is better equipped to explain the

experimental data and is, therefore, should be more realistic.

We want to emphasize again that our reasoning for the double humps (or the

flattening of the Gaussian) in the results of second order computation of C is simple.

To paraphrase again, it is the interplay between the diffusion and wave propagation

behavior contained in the causal diffusion equation. The strong weight factor for

wave propagation, due to comparatively large relaxation time, causes the double

hump structure in the correlation profile. The double hump is an extreme case, the

wave behavior is responsible for the flattening of the otherwise Gaussian like profile.

Note that, regular or first order diffusion alone does not change the Gaussian nature

of the initial distribution. Fig. 8.13, clearly demonstrates this point. It should be note

that the second order solutions here clearly deviates from the Gaussian distribution

as compared to the first order solution.
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from our computations using second order diffusion equation. The red stars are from
STAR data of Ref. [43, 113].

8.3.3 The offset

We have discussed the offset in Chapter 6 in some detail. There we also discussed

how a constant solution of the diffusion equations serves a the offset and may be a

basis of explanation of a part of the ridge. Note that, the offset is the constant A

discussed there.

Here we present the constant solution A we need to fit the data and the constant

baseline STAR used in their analysis [43, 113]. It is very interesting that the values

match very well. This matching indicates that understanding the background thermal

noise can help understanding the ridge. Currently the use of flat baseline is not unique.

For example, in Ref. [104], a wide gaussian has been used as the base line. Use of

different baselines in experimental analysis simply reflects the fact that we have yet to

understand what ridge is. Understanding ridge can be subject of our future research.

In Fig. 8.16, we compare the offsets we needed to fit our computations and those

from the STAR analysis of Ref. [43]. We need to note here that we do not have

the statistical and systematic errors for the offset data. This figure shows a good

agreement of computed offsets with the offsets applied in the experimental analysis.
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CHAPTER 9

OUTLOOK AND SUMMARY

In this chapter we summarize our work as well as present a brief sketch of our

future work. Before going there we, however, start this chapter by demonstrating

the redundancy of the transverse expansion. In Chapter 6 we briefly stated that we

would later show this redundancy in the context of our observables. Using a simple

conservation principle argument we show that how the transverse expansion integrates

out. We then discuss the possible extension of this work and the subject of future

study. Finally, we finish this dissertation with some concluding remarks.

9.1 Transverse expansion and our observables

We recall that the evolution of the pt correlation in our model is dictated by

first and second order hydrodynamics. We used Bjorken longitudinal boost invari-

ance and ignored the transverse expansion making it possible to solve the equations

numerically. As discussed briefly in Chapter 6, a full 3+1 dimensional evolution of

two-particle correlations poses a real computational challenge. The consideration of

only the longitudinal expansion was done to get around this challenge. However, our

analysis and results are more general than they appear in that light. In fact, it can

be demonstrated with a simple argument that we barely loose generality using the

longitudinal expansion alone, as far as our observables are concerned.

Here we make a simple but general argument based on first principles - the con-

servation of energy momentum: ∂µT
µν = 0. Let us integrate this relation over r⊥,

which is basically same as integrating over the azimuthal angle φ. We get

∫
dr⊥∂0T

0ν +

∫
dr⊥∂iT

iν = 0 (9.1)
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For simplicity, let us pick y as the transverse component, i.e., take ν = y. We get

0 =

∫
dx dy ∂0T

0y +

∫
dx dy ∂iT

iy

=

∫
dx dy

∂T 0y

∂t
+

∫
dx dy (∂xT

xy + ∂yT
yy) +

∫
dx dy

∂T zy

∂z

=
∂

∂t

∫
d2r⊥ T

0y +

∫
d2r⊥

∂T zy

∂z
(9.2)

The integral of the middle term in the second line is a surface integral of a gradient.

If we take the surface to “infinity”, i.e., to a large r⊥, we see that this term vanishes.

Note that this is the very term that contains the transverse expansion. The last one

is the longitudinal expansion term. Upon linearization and using Tzy = −η∂zvy we

obtain the diffusion equation, which is the first order version of Eqn. (3.34). Note

the generality of this simple argument. It does not depend on whether the energy

momentum tensor has the Navier-Stokes or the Israel-Stewart form. This argument

is, therefore, valid for the second order diffusion equation for T 0i as well. We recall

that we generalized an Israel-Stewart form of T 0i to obtain our second order diffusion

equation for ∆r, Eqn. (5.11). It is then evident that our observable C, which is an

integral of ∆r (Eqn. (6.6)), does not depend on the transverse expansion. Here need to

note the assumptions made to get to the conclusion - that the transverse coordinates

r⊥ of the expanding system can be taken large enough to make the surface term in

Eqn. 9.2 vanish. Therefore, the results computed using the longitudinal expansion

are general results, as long as the assumptions used here are valid. Also note that

we have used Bjorken longitudinal boost invariance, which itself is an approximation.

Bjorken boost invariance is used in almost all hydrodynamic models because of the

simplifications it provides in deriving relations.

It is also important to note the role of current or energy momentum conservation

for making the transverse expansion redundant. In our case the current is the current

of transverse momentum, which is a conserved quantity. We cannot make the same
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argument with quantities like particle number. Particle numbers or multiplicities are

not conserved.

A relevant quantity that was integrated out in our treatment is the mean trans-

verse flow of particles, the quantity 〈uy〉 in Fig. 3.2. We have taken this mean flow to

be zero. This is also reflected in the use of a co-moving frame, or uµ = (1,0) + δuµ,

in our linearization of the equations of motion in Chapter 3. Now, we can rely on

this assumption, since the transverse expansion integrates out and we use Bjorken

boost invariance for the longitudinal expansion. If one wants to include the effect of

the mean flow one must solve a full 3+1 dimensional problem. For v � 1 (i.e., the

almost non-relativistic case) with Bjorken boost longitudinal invariance, one gets (see

Ref. [114, 115])

∂gt

∂τ
+ (v⊥ · ∇⊥)gt + (gt · ∇⊥)v⊥ = ν

(
1

τ 2

∂2

∂η2
+∇2

⊥

)
gt (9.3)

Solving Eqn. 9.3, when generalized for two-particle correlations, is not a trivial

numerical task. Also, form a theoretical point of view, it remains to be generalized

to fully relativistic case. The latter is also a challenge when looking at the almost

intractable terms one gets from the expression of πµν if one does not assume a co-

moving frame, or zero mean flow.

9.2 Future Work

We have mentioned in previous chapters that experimental measurements of two-

particle correlations of detected particles show complex valleys, hills and ridges in

∆η and ∆φ. The complex correlation profiles must be the results of various effects -

jets, various anisotropic flows, resonances, and so on. What we have done here is an

attempt to understand a limited aspect of it, viz., the contribution of shear viscosity

to the correlations in ∆η. We definitely want to understand and explain a bigger
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picture, which means at least some aspects of the whole three dimensional profile of

the experimentally measured correlations. Any attempt in that direction requires the

solution of full 3+1 dimensional hydro. Currently, there are challenges, as we have

mentioned in the previous section. Overcoming these challenges and extending our

current work will be our immediate future work.

The challenges mentioned in the previous section are opportunities as well. There

are two immediate extensions. Let us call them “project one” and “project two”.

These two projects basically involve the extension of current work to full 3+1 dimen-

sions. In brief, the first is to develop equation for evolution of two-particle correlation

from Eqn. (9.3) and solve it. Project two involves developing a fully relativistic form

of Eqn. (9.3) and starting from there. Note that Eqn. (9.3) holds for near the non-

relativistic limit, v � 1. Thus both involve going to full 3+1 dimensions.

The challenge we have now with “project one” is mainly numerical. As was pointed

out previously, a full 3+1 dimensional treatment of such an equation, for the two-

particle case, turns out to be like dealing with a 6+1 dimensional problem as far as

numerical computations are concerned. Even when we exploit the Bjorken invariance

to make the beam axis coordinate redundant, the diffusion equation still depends

on that coordinate. The quantities like energy density, temperature, etc., depend

only on the proper time and not on η, but ∆r diffuses in η. In this context, our

future work will attempt to look for viable numerical techniques to solve equations

in higher dimensions. One needs to note that full 3+1 dimensional hydrodynamics

are recent entrants in the field [111, 112]. So far, we have developed a way to handle

4+1 dimensional solutions. Therefore our attempt will be looking for the possibility

to extend it further or to look for a way to reduce the dimensionality of the equations

involved.

When we achieve the goal of solving full 3+1 dimensional equations for two-

particle correlations, project two is then more of about theoretical generalization.
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We have noted that Eqn. (9.3) assumes a near non-relativistic limit for fluid particle

speed. Linearizing the equations of motion with a general form of πµν (see Eqns. 3.18

and 3.28) and including the mean flow requires rather tedious theoretical calculations.

In order to simplify we can first do this without the mean flow. This makes the

model similar to current one but extended to full 3+1 spacetime dimensions. Then

we attempt to include the mean flow. It should be noted again that in our current

work the mean flow is taken as zero. Even if we had not taken it to be zero, it

would have been integrated out, as explained in the previous section. The purpose of

including the mean flow is to get rid to the requirement of large r⊥ necessary for the

surface term to vanish.

The obvious reason to generalize to 3 + 1 dimensions is that it is more realistic

and we want to understand the overall correlation profile including that in ∆φ, not

just in ∆η. We want to understand how much dissipative effects like shear viscosity

contribute to the overall correlation profile. The reason for studying the effect of the

mean flow is similar.

One interesting aspect of hydrodynamics and correlation study is related to the

longitudinal modes. So far our study is focused only on transverse modes, which are

the shear modes. Our focus on the shear modes was initially motivated by the shear

viscosity of quark-gluon plasma. The longitudinal modes are the sound modes. Inter-

est in fluctuating hydrodynamics of longitudinal modes has begun to grow recently

(see Ref. [116], for example).

In order to elaborate on the shear and longitudinal modes in the simplest way,

we may take the non-relativistic linearized Navier-Stoke equation, with (somewhat)

relativistic momentum current gi = T0i − 〈T0i〉 ≈ (ε+ p)vi ≈ sTvi

∂tgi +∇ip =
η/3 + ζ

sT
∇i (∇ · g) +

η

sT
∇2gi (9.4)
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Now we use the Helmholtz decomposition into longitudinal and transverse compo-

nents g = gL + gT , where ∇ × gL = 0, and ∇ · gT = 0. Then we find that these

components decouple into the equations for transverse and longitudinal modes. The

transverse mode, obviously, satisfies the diffusion equation

∂tgT =
η

Ts
∇2gT (9.5)

The longitudinal modes, on the other hand, are compression waves damped by vis-

cosity:

∂tgL +∇p =
4η/3 + ζ

sT
∇ (∇ · gL) (9.6)

We note that our study of this work is solely on the the diffusion of the transverse

shear modes. It will definitely be interesting to include the longitudinal modes in our

study.

9.3 Conclusion

This dissertation details our work on the study of the two-particle transverse

momentum correlation function of particles produced in ultra-relativistic heavy ion

collisions. We used second order Israel-Stewart hydrodynamics and stochastic tech-

niques to develop equations for the evolution of the pt correlations. We found that

such correlation above the thermal background fluctuations follows a deterministic

second order diffusion equation. The first order case had previously been studied by

Gavin and Abdel-Aziz [71], which also provided an alternative method for estimating

the shear viscosity to entropy ratio, η/s, for quark-gluon plasma. In addition to the

second order diffusion equation we developed, we also used the first order equation

to compute experimentally measurable observables discussed in Chapter 6.

We used a general temperature dependent η/s in order to compute the diffusion

and relaxation coefficients at each temperature. These coefficients determines the
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strengths of competing wave and diffusion behavior of the second order diffusion

equation. This is discussed in detail in Chapter 8. Dependency of shear viscosity

on temperature is based on the relations put together in the work of Hirano and

Gyulassy in Ref. [85]. Information on entropy density is obtained from lattice QCD

calculations and also from standard Bag Model based calculation. We have also used

the latest information on the relaxation coefficient. This is all discussed in Chapter 4.

The main point is that we have used the latest information on necessary transport

coefficients and equations of state.

In our numerical computations we especially focused on
√
s = 200 GeV Au+Au

collisions at RHIC. This allowed us to compare the computed observables with the

same observables measured by STAR for these Au+Au collisions [43]. We have men-

tioned the experimental results in Chapter 6 and compared the results with our

computations in Chapter 8 with discussion.

Our model only uses the longitudinal expansion since, as explained in Section 9.1,

the transverse expansion turns out to be redundant as far as our observables are

concerned. The underlying assumptions behind this result is also explained in that

section.

We observed in Chapter 8 that the second order diffusion model better repro-

duces the experimental data. The computational results from the first order equation

deviates from the experimental results except for the case of central collisions. As

explained in Chapter 8, we attributed the better agreement to the effects of the in-

terplay between the relaxation time and diffusion strength, both of which contains

the information on the shear viscosity to entropy density ratio. No viscosity informa-

tion means, we use equations of ideal hydrodynamics. We used the computations by

NEXSHPERIO to compare our results with ideal hydrodynamic computations. As

stated in Chapters 6 and 8, NEXSPHERIO uses ideal hydrodynamics with fluctu-

ating initial conditions. The correlation widths resulting from those computations,
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however, showed wide discrepancy from our viscous hydrodynamics computations and

the experimental results.

Computations using a second order diffusion equation also gives a feature that

is not present in the results of the first order case. We have ascribed the feature to

the wave part of the second order diffusion equation, which becomes significant in

light of the fact that the relaxation coefficient has a larger value as compared to the

diffusion coefficient, according to the latest theoretical calculations. This is explained

in Chapters 4 and 8. This feature is also present in experimental results [43], at the

same centralities. We also ascribed a part of the ridge to a constant solution to our

diffusion equation. This is demonstrated by the fact that there is a good agreement

with the offset taken in the experimental analysis and the values of our constant

solutions for all centralities.

In order to understand the full correlation profiles in ∆η and ∆φ, we need to

generalize our model to include transverse expansion as well. In our current work,

we integrated out transverse expansion. We also want to see the effect of non-zero

mean flow. Overall, we need to see the contributions from all possible effects on the

correlation results. This can be done by going to full 3+1 dimensional hydrodynamics

for two-particle correlations. Our future work will be to address this challenging task.

The importance of correlation and related fluctuation studies and measurements

in heavy ions collisions and related physics can hardly be exaggerated. This work is an

attempt to make a small contribution to the bigger goal in an attempt to understand

the correlation features RHIC and LHC experiments have given to us. The need to

properly understand the correlation features has increased even more since now we

see the ridge features even in p+p and p+Pb collisions at LHC energies.
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Degree: Doctor of Philosophy

Relativistic heavy ion collision experiments show clear evidence of creation of a

very short-lived phase of nuclear matter consisting of color-deconfined quarks and

gluons. This matter is known as the quark-gluon plasma (QGP). Fluctuation and

correlation measurements of the detected particles have played a very important role

in revealing the properties of QGP. In particular, these measurements have shown

that the QGP behaves like a nearly perfect liquid. Relativistic hydrodynamics has

been successfully used to study how the QGP evolves before the system hadronizes

and ultimately produces the final state particles. Transport properties like shear

viscosity constitute an important part in such studies.

This work is focused on developing a second order hydrodynamic theory for the

evolution of two-particle transverse momentum correlations. We use general temper-

ature dependent transport and relaxation coefficients as well as the latest information

on equations of state and use both first and second order relativistic viscous hydro-

dynamics to compute experimentally measurable observables. We will show that our

computations using the second order viscous hydrodynamics are in good agreement

with experimental data. We also highlight some features that distinguish the second

order viscous hydrodynamic evolution of QGP from the first order.
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